Cargando…
Hydrogels Based on Imino-Chitosan Amphiphiles as a Matrix for Drug Delivery Systems
This paper reports new formulations based on chitosan, citral, and diclofenac sodium salt (DCF). The central idea was to encapsulate an anionic drug into a polycationic hydrogel matrix in order to increase the intermolecular forces between them and thus to ensure slower drug release, while citral wa...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7696980/ https://www.ncbi.nlm.nih.gov/pubmed/33202586 http://dx.doi.org/10.3390/polym12112687 |
Sumario: | This paper reports new formulations based on chitosan, citral, and diclofenac sodium salt (DCF). The central idea was to encapsulate an anionic drug into a polycationic hydrogel matrix in order to increase the intermolecular forces between them and thus to ensure slower drug release, while citral was used as a penetration enhancer to assure efficient delivery of the drug. Hydrogels without drug were also synthesized and used as a reference. The structure, morphology, and supramolecular architecture of the drug delivery systems were evaluated by FTIR spectroscopy, scanning electron microscopy, polarized optical microscopy, and wide-angle X-ray diffraction. The drug release kinetics was monitored in vitro by UV-VIS spectroscopy, in physiological conditions, while the enzymatic and hydrolytic degradability of the hydrogels were evaluated in the presence of lysozyme and phosphate buffer saline (PBS), at 37 °C. All of the data revealed that the anionic DCF was strongly anchored into the polycationic matrix and the drug was slowly released over 7 days. Moreover, the release rate can be controlled by simple variation of the molar ratio between the polycationic chitosan and lipophilic citral. |
---|