Cargando…
Emerging BRAF Mutations in Cancer Progression and Their Possible Effects on Transcriptional Networks
Gene mutations can induce cellular alteration and malignant transformation. Development of many types of cancer is associated with mutations in the B-raf proto-oncogene (BRAF) gene. The encoded protein is a component of the mitogen-activated protein kinases/extracellular signal-regulated kinases (MA...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7697059/ https://www.ncbi.nlm.nih.gov/pubmed/33198372 http://dx.doi.org/10.3390/genes11111342 |
_version_ | 1783615540708769792 |
---|---|
author | Śmiech, Magdalena Leszczyński, Paweł Kono, Hidetoshi Wardell, Christopher Taniguchi, Hiroaki |
author_facet | Śmiech, Magdalena Leszczyński, Paweł Kono, Hidetoshi Wardell, Christopher Taniguchi, Hiroaki |
author_sort | Śmiech, Magdalena |
collection | PubMed |
description | Gene mutations can induce cellular alteration and malignant transformation. Development of many types of cancer is associated with mutations in the B-raf proto-oncogene (BRAF) gene. The encoded protein is a component of the mitogen-activated protein kinases/extracellular signal-regulated kinases (MAPK/ERK) signaling pathway, transmitting information from the outside to the cell nucleus. The main function of the MAPK/ERK pathway is to regulate cell growth, migration, and proliferation. The most common mutations in the BRAF gene encode the V600E mutant (class I), which causes continuous activation and signal transduction, regardless of external stimulus. Consequently, cell proliferation and invasion are enhanced in cancer patients with such mutations. The V600E mutation has been linked to melanoma, colorectal cancer, multiple myeloma, and other types of cancers. Importantly, emerging evidence has recently indicated that new types of mutations (classes II and III) also play a paramount role in the development of cancer. In this minireview, we discuss the influence of various BRAF mutations in cancer, including aberrant transcriptional gene regulation in the affected tissues. |
format | Online Article Text |
id | pubmed-7697059 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-76970592020-11-29 Emerging BRAF Mutations in Cancer Progression and Their Possible Effects on Transcriptional Networks Śmiech, Magdalena Leszczyński, Paweł Kono, Hidetoshi Wardell, Christopher Taniguchi, Hiroaki Genes (Basel) Perspective Gene mutations can induce cellular alteration and malignant transformation. Development of many types of cancer is associated with mutations in the B-raf proto-oncogene (BRAF) gene. The encoded protein is a component of the mitogen-activated protein kinases/extracellular signal-regulated kinases (MAPK/ERK) signaling pathway, transmitting information from the outside to the cell nucleus. The main function of the MAPK/ERK pathway is to regulate cell growth, migration, and proliferation. The most common mutations in the BRAF gene encode the V600E mutant (class I), which causes continuous activation and signal transduction, regardless of external stimulus. Consequently, cell proliferation and invasion are enhanced in cancer patients with such mutations. The V600E mutation has been linked to melanoma, colorectal cancer, multiple myeloma, and other types of cancers. Importantly, emerging evidence has recently indicated that new types of mutations (classes II and III) also play a paramount role in the development of cancer. In this minireview, we discuss the influence of various BRAF mutations in cancer, including aberrant transcriptional gene regulation in the affected tissues. MDPI 2020-11-12 /pmc/articles/PMC7697059/ /pubmed/33198372 http://dx.doi.org/10.3390/genes11111342 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Perspective Śmiech, Magdalena Leszczyński, Paweł Kono, Hidetoshi Wardell, Christopher Taniguchi, Hiroaki Emerging BRAF Mutations in Cancer Progression and Their Possible Effects on Transcriptional Networks |
title | Emerging BRAF Mutations in Cancer Progression and Their Possible Effects on Transcriptional Networks |
title_full | Emerging BRAF Mutations in Cancer Progression and Their Possible Effects on Transcriptional Networks |
title_fullStr | Emerging BRAF Mutations in Cancer Progression and Their Possible Effects on Transcriptional Networks |
title_full_unstemmed | Emerging BRAF Mutations in Cancer Progression and Their Possible Effects on Transcriptional Networks |
title_short | Emerging BRAF Mutations in Cancer Progression and Their Possible Effects on Transcriptional Networks |
title_sort | emerging braf mutations in cancer progression and their possible effects on transcriptional networks |
topic | Perspective |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7697059/ https://www.ncbi.nlm.nih.gov/pubmed/33198372 http://dx.doi.org/10.3390/genes11111342 |
work_keys_str_mv | AT smiechmagdalena emergingbrafmutationsincancerprogressionandtheirpossibleeffectsontranscriptionalnetworks AT leszczynskipaweł emergingbrafmutationsincancerprogressionandtheirpossibleeffectsontranscriptionalnetworks AT konohidetoshi emergingbrafmutationsincancerprogressionandtheirpossibleeffectsontranscriptionalnetworks AT wardellchristopher emergingbrafmutationsincancerprogressionandtheirpossibleeffectsontranscriptionalnetworks AT taniguchihiroaki emergingbrafmutationsincancerprogressionandtheirpossibleeffectsontranscriptionalnetworks |