Cargando…
Comparison of Toxicological Bioassays for Whiteflies
SIMPLE SUMMARY: Insecticides are commonly used to manage whiteflies in many crops including vegetables, but frequent use can cause these pests to become resistant to insecticides. Resistance can lead to control failure and severe crop damage, thus the need for insecticide efficacy testing and insect...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7697111/ https://www.ncbi.nlm.nih.gov/pubmed/33198079 http://dx.doi.org/10.3390/insects11110789 |
Sumario: | SIMPLE SUMMARY: Insecticides are commonly used to manage whiteflies in many crops including vegetables, but frequent use can cause these pests to become resistant to insecticides. Resistance can lead to control failure and severe crop damage, thus the need for insecticide efficacy testing and insecticide resistance monitoring. A study was conducted to determine whether any current methods of toxicity assays are better than others for testing whiteflies for insecticide resistance and efficacy for better information to make effective pest control decisions. ABSTRACT: Two Bemisia tabaci populations from Georgia and Florida, USA, were tested for their response to insecticides across different toxicological bioassay methods. Five insecticides in four Insecticide Resistance Action Committee (IRAC) groups (imidacloprid (4A), dinotefuran (4A), flupyradifurone (4D), pyriproxyfen (7C) and cyantraniliprole (28)), were evaluated against a water check. The routes of application to the plant used were either leaf drench or (systemic) root drench. The four different whitefly bioassay methodologies tested were two published IRAC methods, a clip cage method, and a new tube method. A split–split experimental design was used to assess any interactions between application route, bioassay method and insecticide treatment. Application route had no significant effect on efficacy. However, bioassay method affected overall whitefly mortality, with the dish method having reduced mortality compared to other methods, except for the clip cage method. High rates of cyantraniliprole, dinotefuran and flupyradifurone insecticides resulted in the highest incidence of adult whitefly mortality. Significant interactions relative to percent adult mortality were found between the insecticide and bioassay method for both populations assayed. The clip cage method was more sensitive in terms of dose mortality response followed by the cup and tube methods. The dish method was the least responsive to insecticide dose. Other interactions are discussed. |
---|