Cargando…

Characterization of a Macro- and Micro-Textured Titanium Grade 5 Alloy Surface Obtained by Etching Only without Sandblasting

Our purpose was to physically characterize the surface, and the subsurface, of a macro- and micro-textured titanium grade 5 dental implant surface obtained by etching only, without sandblasting. The topography, surface roughness, as well as the surface structure and subsurface distribution of elemen...

Descripción completa

Detalles Bibliográficos
Autores principales: Szmukler-Moncler, Serge, Blus, Cornelio, Morales Schwarz, David, Orrù, Germano
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7697246/
https://www.ncbi.nlm.nih.gov/pubmed/33187066
http://dx.doi.org/10.3390/ma13225074
Descripción
Sumario:Our purpose was to physically characterize the surface, and the subsurface, of a macro- and micro-textured titanium grade 5 dental implant surface obtained by etching only, without sandblasting. The topography, surface roughness, as well as the surface structure and subsurface distribution of elements, were determined by scanning electronic microscopy (SEM), non-contact profilometry, X-ray diffraction (XRD), and a concentration profile performed by Auger electron spectroscopy (AES). The hydrogen concentration in the implants was measured; the ability to generate nanostructures when stored in deionized water was also investigated. Under SEM, the surface resembled a sandblasted and etched titanium surface with its typical macro- and micro-texture; roughness was moderate with average roughness (Sa) 1.29 µm. No titanium hydride was found at the implant surface and no enrichment of any alloying element was identified at the surface and subsurface. Hydrogen concentration was 79 ppm, within the normative tolerance (<130 ppm). After storage in water for 6 months, densely packed finger-like nanostructures were observed. The clinical advantage of this textured titanium alloy surface is that it displays the typical macro- and micro-features of a moderately rough sandblasted and etched (SLA) titanium surface without leaving behind any foreign sandblasting material.