Cargando…
Maternal Linoleic Acid Overconsumption Alters Offspring Gut and Adipose Tissue Homeostasis in Young but Not Older Adult Rats
Maternal n-6 polyunsaturated fatty acids (PUFA) consumption during gestation and lactation can predispose offspring to the development of metabolic diseases such as obesity later in life. However, the mechanisms underlying the potential programming effect of n-6 PUFA upon offspring physiology are no...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7697261/ https://www.ncbi.nlm.nih.gov/pubmed/33187208 http://dx.doi.org/10.3390/nu12113451 |
_version_ | 1783615573320531968 |
---|---|
author | Marchix, Justine Alain, Charlène David-Le Gall, Sandrine Acuña-Amador, Luis Alberto Druart, Céline Delzenne, Nathalie M. Barloy-Hubler, Frédérique Legrand, Philippe Boudry, Gaëlle |
author_facet | Marchix, Justine Alain, Charlène David-Le Gall, Sandrine Acuña-Amador, Luis Alberto Druart, Céline Delzenne, Nathalie M. Barloy-Hubler, Frédérique Legrand, Philippe Boudry, Gaëlle |
author_sort | Marchix, Justine |
collection | PubMed |
description | Maternal n-6 polyunsaturated fatty acids (PUFA) consumption during gestation and lactation can predispose offspring to the development of metabolic diseases such as obesity later in life. However, the mechanisms underlying the potential programming effect of n-6 PUFA upon offspring physiology are not yet all established. Herein, we investigated the effects of maternal and weaning linoleic acid (LA)-rich diet interactions on gut intestinal and adipose tissue physiology in young (3-month-old) and older (6-month-old) adult offspring. Pregnant rats were fed a control diet (2% LA) or an LA-rich diet (12% LA) during gestation and lactation. At weaning, offspring were either maintained on the maternal diet or fed the other diet for 3 or 6 months. At 3 months of age, the maternal LA-diet favored low-grade inflammation and greater adiposity, while at 6 months of age, offspring intestinal barrier function, adipose tissue physiology and hepatic conjugated linoleic acids were strongly influenced by the weaning diet. The maternal LA-diet impacted offspring cecal microbiota diversity and composition at 3 months of age, but had only few remnant effects upon cecal microbiota composition at 6 months of age. Our study suggests that perinatal exposure to high LA levels induces a differential metabolic response to weaning diet exposure in adult life. This programming effect of a maternal LA-diet may be related to the alteration of offspring gut microbiota. |
format | Online Article Text |
id | pubmed-7697261 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-76972612020-11-29 Maternal Linoleic Acid Overconsumption Alters Offspring Gut and Adipose Tissue Homeostasis in Young but Not Older Adult Rats Marchix, Justine Alain, Charlène David-Le Gall, Sandrine Acuña-Amador, Luis Alberto Druart, Céline Delzenne, Nathalie M. Barloy-Hubler, Frédérique Legrand, Philippe Boudry, Gaëlle Nutrients Article Maternal n-6 polyunsaturated fatty acids (PUFA) consumption during gestation and lactation can predispose offspring to the development of metabolic diseases such as obesity later in life. However, the mechanisms underlying the potential programming effect of n-6 PUFA upon offspring physiology are not yet all established. Herein, we investigated the effects of maternal and weaning linoleic acid (LA)-rich diet interactions on gut intestinal and adipose tissue physiology in young (3-month-old) and older (6-month-old) adult offspring. Pregnant rats were fed a control diet (2% LA) or an LA-rich diet (12% LA) during gestation and lactation. At weaning, offspring were either maintained on the maternal diet or fed the other diet for 3 or 6 months. At 3 months of age, the maternal LA-diet favored low-grade inflammation and greater adiposity, while at 6 months of age, offspring intestinal barrier function, adipose tissue physiology and hepatic conjugated linoleic acids were strongly influenced by the weaning diet. The maternal LA-diet impacted offspring cecal microbiota diversity and composition at 3 months of age, but had only few remnant effects upon cecal microbiota composition at 6 months of age. Our study suggests that perinatal exposure to high LA levels induces a differential metabolic response to weaning diet exposure in adult life. This programming effect of a maternal LA-diet may be related to the alteration of offspring gut microbiota. MDPI 2020-11-11 /pmc/articles/PMC7697261/ /pubmed/33187208 http://dx.doi.org/10.3390/nu12113451 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Marchix, Justine Alain, Charlène David-Le Gall, Sandrine Acuña-Amador, Luis Alberto Druart, Céline Delzenne, Nathalie M. Barloy-Hubler, Frédérique Legrand, Philippe Boudry, Gaëlle Maternal Linoleic Acid Overconsumption Alters Offspring Gut and Adipose Tissue Homeostasis in Young but Not Older Adult Rats |
title | Maternal Linoleic Acid Overconsumption Alters Offspring Gut and Adipose Tissue Homeostasis in Young but Not Older Adult Rats |
title_full | Maternal Linoleic Acid Overconsumption Alters Offspring Gut and Adipose Tissue Homeostasis in Young but Not Older Adult Rats |
title_fullStr | Maternal Linoleic Acid Overconsumption Alters Offspring Gut and Adipose Tissue Homeostasis in Young but Not Older Adult Rats |
title_full_unstemmed | Maternal Linoleic Acid Overconsumption Alters Offspring Gut and Adipose Tissue Homeostasis in Young but Not Older Adult Rats |
title_short | Maternal Linoleic Acid Overconsumption Alters Offspring Gut and Adipose Tissue Homeostasis in Young but Not Older Adult Rats |
title_sort | maternal linoleic acid overconsumption alters offspring gut and adipose tissue homeostasis in young but not older adult rats |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7697261/ https://www.ncbi.nlm.nih.gov/pubmed/33187208 http://dx.doi.org/10.3390/nu12113451 |
work_keys_str_mv | AT marchixjustine maternallinoleicacidoverconsumptionaltersoffspringgutandadiposetissuehomeostasisinyoungbutnotolderadultrats AT alaincharlene maternallinoleicacidoverconsumptionaltersoffspringgutandadiposetissuehomeostasisinyoungbutnotolderadultrats AT davidlegallsandrine maternallinoleicacidoverconsumptionaltersoffspringgutandadiposetissuehomeostasisinyoungbutnotolderadultrats AT acunaamadorluisalberto maternallinoleicacidoverconsumptionaltersoffspringgutandadiposetissuehomeostasisinyoungbutnotolderadultrats AT druartceline maternallinoleicacidoverconsumptionaltersoffspringgutandadiposetissuehomeostasisinyoungbutnotolderadultrats AT delzennenathaliem maternallinoleicacidoverconsumptionaltersoffspringgutandadiposetissuehomeostasisinyoungbutnotolderadultrats AT barloyhublerfrederique maternallinoleicacidoverconsumptionaltersoffspringgutandadiposetissuehomeostasisinyoungbutnotolderadultrats AT legrandphilippe maternallinoleicacidoverconsumptionaltersoffspringgutandadiposetissuehomeostasisinyoungbutnotolderadultrats AT boudrygaelle maternallinoleicacidoverconsumptionaltersoffspringgutandadiposetissuehomeostasisinyoungbutnotolderadultrats |