Cargando…
Accelerometer-Based Human Activity Recognition for Patient Monitoring Using a Deep Neural Network
The objective of this study was to investigate the accuracy of a Deep Neural Network (DNN) in recognizing activities typical for hospitalized patients. A data collection study was conducted with 20 healthy volunteers (10 males and 10 females, age = 43 ± 13 years) in a simulated hospital environment....
Autores principales: | Fridriksdottir, Esther, Bonomi, Alberto G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7697281/ https://www.ncbi.nlm.nih.gov/pubmed/33182813 http://dx.doi.org/10.3390/s20226424 |
Ejemplares similares
-
Robust Human Activity Recognition by Integrating Image and Accelerometer Sensor Data Using Deep Fusion Network
por: Kang, Junhyuk, et al.
Publicado: (2021) -
Deep Recurrent Neural Networks for Human Activity Recognition
por: Murad, Abdulmajid, et al.
Publicado: (2017) -
Effective Melanoma Recognition Using Deep Convolutional Neural Network with Covariance Discriminant Loss
por: Guo, Lei, et al.
Publicado: (2020) -
Accelerometer-Based Human Fall Detection Using Convolutional Neural Networks
por: Santos, Guto Leoni, et al.
Publicado: (2019) -
Optimization of deep neural network-based human activity recognition for a wearable device
por: Suwannarat, K., et al.
Publicado: (2021)