Cargando…
The Tumor–Fat Interface Volume of Breast Cancer on Pretreatment MRI Is Associated with a Pathologic Response to Neoadjuvant Chemotherapy
SIMPLE SUMMARY: Contact between a tumor and the adjacent fat is a potential biomarker to predict the therapy response in breast cancer, but it has not been quantitatively explored. In this study, we measured the direct contact between the tumor and adjacent fat using breast magnetic resonance imagin...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7697338/ https://www.ncbi.nlm.nih.gov/pubmed/33182628 http://dx.doi.org/10.3390/biology9110391 |
Sumario: | SIMPLE SUMMARY: Contact between a tumor and the adjacent fat is a potential biomarker to predict the therapy response in breast cancer, but it has not been quantitatively explored. In this study, we measured the direct contact between the tumor and adjacent fat using breast magnetic resonance imaging with machine learning and found that patients with a greater volume of contact between tumor and fat were less likely to have a complete pathological response. Our results suggest that the volume of the tumor–fat interface is a potential prognostic imaging biomarker to predict the treatment response to neoadjuvant chemotherapy. ABSTRACT: Adipocytes are active sources of numerous adipokines that work in both a paracrine and endocrine manner. It is not known that the direct contact between tumor and neighboring fat measured by pretreatment breast magnetic resonance imaging (MRI) affects treatment outcomes to neoadjuvant chemotherapy (NAC) in breast cancer patients. A biomarker quantifying the tumor–fat interface volume from pretreatment MRI was proposed and used to predict pathologic complete response (pCR) in breast cancer patients treated with NAC. The tumor–fat interface volume was computed with data-driven clustering using multiphasic MRI. Our approach was developed and validated in two cohorts consisting of 1140 patients. A high tumor–fat interface volume was significantly associated with a non-pCR in both the development and validation cohorts (p = 0.030 and p = 0.037, respectively). Quantitative measurement of the tumor–fat interface volume based on pretreatment MRI may be useful for precision medicine and subsequently influence the treatment strategy of patients. |
---|