Cargando…

Base-Pairs’ Correlated Oscillation Effects on the Charge Transfer in Double-Helix B-DNA Molecules

By introducing a suitable renormalization process, the charge carrier and phonon dynamics of a double-stranded helical DNA molecule are expressed in terms of an effective Hamiltonian describing a linear chain, where the renormalized transfer integrals explicitly depend on the relative orientations o...

Descripción completa

Detalles Bibliográficos
Autor principal: Maciá, Enrique
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7697525/
https://www.ncbi.nlm.nih.gov/pubmed/33202814
http://dx.doi.org/10.3390/ma13225119
Descripción
Sumario:By introducing a suitable renormalization process, the charge carrier and phonon dynamics of a double-stranded helical DNA molecule are expressed in terms of an effective Hamiltonian describing a linear chain, where the renormalized transfer integrals explicitly depend on the relative orientations of the Watson–Crick base pairs, and the renormalized on-site energies are related to the electronic parameters of consecutive base pairs along the helix axis, as well as to the low-frequency phonons’ dispersion relation. The existence of synchronized collective oscillations enhancing the [Formula: see text]- [Formula: see text] orbital overlapping among different base pairs is disclosed from the study of the obtained analytical dynamical equations. The role of these phonon-correlated, long-range oscillation effects on the charge transfer properties of double-stranded DNA homopolymers is discussed in terms of the resulting band structure.