Cargando…
Impact of Urban Morphology and Climate on Heating Energy Consumption of Buildings in Severe Cold Regions
This study aims to acquire a better understanding of the quantitative relationship between environmental impact factors and heating energy consumption of buildings in severe cold regions. We analyze the effects of five urban morphological parameters (building density, aspect ratio, building height,...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7697540/ https://www.ncbi.nlm.nih.gov/pubmed/33187388 http://dx.doi.org/10.3390/ijerph17228354 |
_version_ | 1783615619673882624 |
---|---|
author | Song, Shiyi Leng, Hong Xu, Han Guo, Ran Zhao, Yan |
author_facet | Song, Shiyi Leng, Hong Xu, Han Guo, Ran Zhao, Yan |
author_sort | Song, Shiyi |
collection | PubMed |
description | This study aims to acquire a better understanding of the quantitative relationship between environmental impact factors and heating energy consumption of buildings in severe cold regions. We analyze the effects of five urban morphological parameters (building density, aspect ratio, building height, floor area ratio, and shape factor) and three climatic parameters (temperature, wind speed, and relative humidity) on the heating energy use intensity (EUI) of commercial and residential buildings in a severe cold region. We develop regression models using empirical data to quantitatively evaluate the impact of each parameter. A stepwise approach is used to ensure that all the independent variables are significant and to eliminate the effects of multicollinearity. Finally, a spatial cluster analysis is performed to identify the distribution characteristics of heating EUI. The results indicate that the building height, shape factor, temperature, and wind speed have a significant impact on heating EUI, and their effects vary with the type of building. The cluster analysis indicated that the areas in the north, east, and along the river exhibited high heating EUI. The findings obtained herein can be used to evaluate building energy efficiency for urban planners and heating companies and departments based on the surrounding environmental conditions. |
format | Online Article Text |
id | pubmed-7697540 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-76975402020-11-29 Impact of Urban Morphology and Climate on Heating Energy Consumption of Buildings in Severe Cold Regions Song, Shiyi Leng, Hong Xu, Han Guo, Ran Zhao, Yan Int J Environ Res Public Health Article This study aims to acquire a better understanding of the quantitative relationship between environmental impact factors and heating energy consumption of buildings in severe cold regions. We analyze the effects of five urban morphological parameters (building density, aspect ratio, building height, floor area ratio, and shape factor) and three climatic parameters (temperature, wind speed, and relative humidity) on the heating energy use intensity (EUI) of commercial and residential buildings in a severe cold region. We develop regression models using empirical data to quantitatively evaluate the impact of each parameter. A stepwise approach is used to ensure that all the independent variables are significant and to eliminate the effects of multicollinearity. Finally, a spatial cluster analysis is performed to identify the distribution characteristics of heating EUI. The results indicate that the building height, shape factor, temperature, and wind speed have a significant impact on heating EUI, and their effects vary with the type of building. The cluster analysis indicated that the areas in the north, east, and along the river exhibited high heating EUI. The findings obtained herein can be used to evaluate building energy efficiency for urban planners and heating companies and departments based on the surrounding environmental conditions. MDPI 2020-11-11 2020-11 /pmc/articles/PMC7697540/ /pubmed/33187388 http://dx.doi.org/10.3390/ijerph17228354 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Song, Shiyi Leng, Hong Xu, Han Guo, Ran Zhao, Yan Impact of Urban Morphology and Climate on Heating Energy Consumption of Buildings in Severe Cold Regions |
title | Impact of Urban Morphology and Climate on Heating Energy Consumption of Buildings in Severe Cold Regions |
title_full | Impact of Urban Morphology and Climate on Heating Energy Consumption of Buildings in Severe Cold Regions |
title_fullStr | Impact of Urban Morphology and Climate on Heating Energy Consumption of Buildings in Severe Cold Regions |
title_full_unstemmed | Impact of Urban Morphology and Climate on Heating Energy Consumption of Buildings in Severe Cold Regions |
title_short | Impact of Urban Morphology and Climate on Heating Energy Consumption of Buildings in Severe Cold Regions |
title_sort | impact of urban morphology and climate on heating energy consumption of buildings in severe cold regions |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7697540/ https://www.ncbi.nlm.nih.gov/pubmed/33187388 http://dx.doi.org/10.3390/ijerph17228354 |
work_keys_str_mv | AT songshiyi impactofurbanmorphologyandclimateonheatingenergyconsumptionofbuildingsinseverecoldregions AT lenghong impactofurbanmorphologyandclimateonheatingenergyconsumptionofbuildingsinseverecoldregions AT xuhan impactofurbanmorphologyandclimateonheatingenergyconsumptionofbuildingsinseverecoldregions AT guoran impactofurbanmorphologyandclimateonheatingenergyconsumptionofbuildingsinseverecoldregions AT zhaoyan impactofurbanmorphologyandclimateonheatingenergyconsumptionofbuildingsinseverecoldregions |