Cargando…
Can We Ditch Feature Engineering? End-to-End Deep Learning for Affect Recognition from Physiological Sensor Data
To further extend the applicability of wearable sensors in various domains such as mobile health systems and the automotive industry, new methods for accurately extracting subtle physiological information from these wearable sensors are required. However, the extraction of valuable information from...
Autores principales: | Dzieżyc, Maciej, Gjoreski, Martin, Kazienko, Przemysław, Saganowski, Stanisław, Gams, Matjaž |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7697590/ https://www.ncbi.nlm.nih.gov/pubmed/33207564 http://dx.doi.org/10.3390/s20226535 |
Ejemplares similares
-
Emognition dataset: emotion recognition with self-reports, facial expressions, and physiology using wearables
por: Saganowski, Stanisław, et al.
Publicado: (2022) -
Detection of Gait Abnormalities for Fall Risk Assessment Using Wrist-Worn Inertial Sensors and Deep Learning
por: Kiprijanovska, Ivana, et al.
Publicado: (2020) -
Analysis of group evolution prediction in complex networks
por: Saganowski, Stanisław, et al.
Publicado: (2019) -
How Accurately Can Your Wrist Device Recognize Daily Activities and Detect Falls?
por: Gjoreski, Martin, et al.
Publicado: (2016) -
Predicting the Evolution of Physics Research from a Complex Network Perspective
por: Liu, Wenyuan, et al.
Publicado: (2019)