Cargando…
Soil Salinity Inversion of Winter Wheat Areas Based on Satellite-Unmanned Aerial Vehicle-Ground Collaborative System in Coastal of the Yellow River Delta
Soil salinization is an important factor affecting winter wheat growth in coastal areas. The rapid, accurate and efficient estimation of soil salt content is of great significance for agricultural production. The Kenli area in the Yellow River Delta was taken as the research area. Three machine lear...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7697605/ https://www.ncbi.nlm.nih.gov/pubmed/33202692 http://dx.doi.org/10.3390/s20226521 |
_version_ | 1783615635259916288 |
---|---|
author | Qi, Guanghui Zhao, Gengxing Xi, Xue |
author_facet | Qi, Guanghui Zhao, Gengxing Xi, Xue |
author_sort | Qi, Guanghui |
collection | PubMed |
description | Soil salinization is an important factor affecting winter wheat growth in coastal areas. The rapid, accurate and efficient estimation of soil salt content is of great significance for agricultural production. The Kenli area in the Yellow River Delta was taken as the research area. Three machine learning inversion models, namely, BP neural network (BPNN), support vector machine (SVM) and random forest (RF) were constructed using ground-measured data and UAV images, and the optimal model is applied to UAV images to obtain the salinity inversion result, which is used as the true salt value of the Sentinel-2A image to establish BPNN, SVM and RF collaborative inversion models, and apply the optimal model to the study area. The results showed that the RF collaborative inversion model is optimal, R(2) = 0.885. The inversion results are verified by using the measured soil salt data in the study area, which is significantly better than the directly satellite remote sensing inversion method. This study integrates the advantages of multi-scale data and proposes an effective “Satellite-UAV-Ground” collaborative inversion method for soil salinity, so as to obtain more accurate soil information, and provide more effective technical support for agricultural production. |
format | Online Article Text |
id | pubmed-7697605 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-76976052020-11-29 Soil Salinity Inversion of Winter Wheat Areas Based on Satellite-Unmanned Aerial Vehicle-Ground Collaborative System in Coastal of the Yellow River Delta Qi, Guanghui Zhao, Gengxing Xi, Xue Sensors (Basel) Article Soil salinization is an important factor affecting winter wheat growth in coastal areas. The rapid, accurate and efficient estimation of soil salt content is of great significance for agricultural production. The Kenli area in the Yellow River Delta was taken as the research area. Three machine learning inversion models, namely, BP neural network (BPNN), support vector machine (SVM) and random forest (RF) were constructed using ground-measured data and UAV images, and the optimal model is applied to UAV images to obtain the salinity inversion result, which is used as the true salt value of the Sentinel-2A image to establish BPNN, SVM and RF collaborative inversion models, and apply the optimal model to the study area. The results showed that the RF collaborative inversion model is optimal, R(2) = 0.885. The inversion results are verified by using the measured soil salt data in the study area, which is significantly better than the directly satellite remote sensing inversion method. This study integrates the advantages of multi-scale data and proposes an effective “Satellite-UAV-Ground” collaborative inversion method for soil salinity, so as to obtain more accurate soil information, and provide more effective technical support for agricultural production. MDPI 2020-11-14 /pmc/articles/PMC7697605/ /pubmed/33202692 http://dx.doi.org/10.3390/s20226521 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Qi, Guanghui Zhao, Gengxing Xi, Xue Soil Salinity Inversion of Winter Wheat Areas Based on Satellite-Unmanned Aerial Vehicle-Ground Collaborative System in Coastal of the Yellow River Delta |
title | Soil Salinity Inversion of Winter Wheat Areas Based on Satellite-Unmanned Aerial Vehicle-Ground Collaborative System in Coastal of the Yellow River Delta |
title_full | Soil Salinity Inversion of Winter Wheat Areas Based on Satellite-Unmanned Aerial Vehicle-Ground Collaborative System in Coastal of the Yellow River Delta |
title_fullStr | Soil Salinity Inversion of Winter Wheat Areas Based on Satellite-Unmanned Aerial Vehicle-Ground Collaborative System in Coastal of the Yellow River Delta |
title_full_unstemmed | Soil Salinity Inversion of Winter Wheat Areas Based on Satellite-Unmanned Aerial Vehicle-Ground Collaborative System in Coastal of the Yellow River Delta |
title_short | Soil Salinity Inversion of Winter Wheat Areas Based on Satellite-Unmanned Aerial Vehicle-Ground Collaborative System in Coastal of the Yellow River Delta |
title_sort | soil salinity inversion of winter wheat areas based on satellite-unmanned aerial vehicle-ground collaborative system in coastal of the yellow river delta |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7697605/ https://www.ncbi.nlm.nih.gov/pubmed/33202692 http://dx.doi.org/10.3390/s20226521 |
work_keys_str_mv | AT qiguanghui soilsalinityinversionofwinterwheatareasbasedonsatelliteunmannedaerialvehiclegroundcollaborativesystemincoastaloftheyellowriverdelta AT zhaogengxing soilsalinityinversionofwinterwheatareasbasedonsatelliteunmannedaerialvehiclegroundcollaborativesystemincoastaloftheyellowriverdelta AT xixue soilsalinityinversionofwinterwheatareasbasedonsatelliteunmannedaerialvehiclegroundcollaborativesystemincoastaloftheyellowriverdelta |