Cargando…

Effect of pH and Heat Treatment on the Antioxidant Activity of Egg White Protein-Derived Peptides after Simulated In-Vitro Gastrointestinal Digestion

The study aimed to analyze pH and heat treatment’s effect in modulating the release of peptides with antioxidant activity after simulated gastrointestinal (GI) digestion of Egg white powder (EWP). EWP samples with neutral (EWPN) and alkaline (EWPA) pH were heat-treated at 20, 60, and 90 °C and analy...

Descripción completa

Detalles Bibliográficos
Autores principales: Rao, Priyanka Singh, Nolasco, Emerson, Handa, Akihiro, Naldrett, Michael J., Alvarez, Sophie, Majumder, Kaustav
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7697783/
https://www.ncbi.nlm.nih.gov/pubmed/33187320
http://dx.doi.org/10.3390/antiox9111114
Descripción
Sumario:The study aimed to analyze pH and heat treatment’s effect in modulating the release of peptides with antioxidant activity after simulated gastrointestinal (GI) digestion of Egg white powder (EWP). EWP samples with neutral (EWPN) and alkaline (EWPA) pH were heat-treated at 20, 60, and 90 °C and analyzed for protein aggregation, solubility, and GI digestibility. Heat treatment decreased solubility and induced protein aggregation, which was higher for EWPN as compared to EWPA. The unfolding of EWPA proteins at 60 °C exhibited a higher GI digestibility and antioxidant activity via Oxygen Radical Absorbance Capacity (ORAC) assay as compared to EWPN. Interestingly, a reverse trend was observed in the cellular antioxidant assay, and the GI-digest of EWPN exhibited a higher antioxidant activity. The LC-MS/MS analysis are in concordance with cellular antioxidant activity assay and showed a higher intensity for peptides with potential antioxidant activity in the GI-digest of EWPN. The results indicate that heat treatment but not the pH is a critical factor in improving the protein digestibility and releasing peptides with antioxidant activity after GI digestion.