Cargando…
Facilitating the Development of Deep Learning Models with Visual Analytics for Electronic Health Records
Electronic health record (EHR) data are widely used to perform early diagnoses and create treatment plans, which are key areas of research. We aimed to increase the efficiency of iteratively applying data-intensive technology and verifying the results for complex and big EHR data. We used a system e...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7697823/ https://www.ncbi.nlm.nih.gov/pubmed/33182703 http://dx.doi.org/10.3390/ijerph17228303 |
Sumario: | Electronic health record (EHR) data are widely used to perform early diagnoses and create treatment plans, which are key areas of research. We aimed to increase the efficiency of iteratively applying data-intensive technology and verifying the results for complex and big EHR data. We used a system entailing sequence mining, interpretable deep learning models, and visualization on data extracted from the MIMIC-IIIdatabase for a group of patients diagnosed with heart disease. The results of sequence mining corresponded to specific pathways of interest to medical staff and were used to select patient groups that underwent these pathways. An interactive Sankey diagram representing these pathways and a heat map visually representing the weight of each variable were developed for temporal and quantitative illustration. We applied the proposed system to predict unplanned cardiac surgery using clinical pathways determined by sequence pattern mining to select cardiac surgery from complex EHRs to label subject groups and deep learning models. The proposed system aids in the selection of pathway-based patient groups, simplification of labeling, and exploratory the interpretation of the modeling results. The proposed system can help medical staff explore various pathways that patients have undergone and further facilitate the testing of various clinical hypotheses using big data in the medical domain. |
---|