Cargando…

Histological Evaluation and Gene Expression Profiling of Autophagy-Related Genes for Cartilage of Young and Senescent Rats

Autophagy is a cellular mechanism that protects cells from stress by digesting non-functional cellular components. In the cartilage, chondrocytes depend on autophagy as a principal mechanism to maintain cellular homeostasis. This protective role diminishes prior to the structural damage that normall...

Descripción completa

Detalles Bibliográficos
Autores principales: Arias, Consuelo, Saavedra, Nicolás, Leal, Karla, Vásquez, Bélgica, Abdalla, Dulcineia S. P., Salazar, Luis A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7697851/
https://www.ncbi.nlm.nih.gov/pubmed/33203108
http://dx.doi.org/10.3390/ijms21228607
_version_ 1783615693535576064
author Arias, Consuelo
Saavedra, Nicolás
Leal, Karla
Vásquez, Bélgica
Abdalla, Dulcineia S. P.
Salazar, Luis A.
author_facet Arias, Consuelo
Saavedra, Nicolás
Leal, Karla
Vásquez, Bélgica
Abdalla, Dulcineia S. P.
Salazar, Luis A.
author_sort Arias, Consuelo
collection PubMed
description Autophagy is a cellular mechanism that protects cells from stress by digesting non-functional cellular components. In the cartilage, chondrocytes depend on autophagy as a principal mechanism to maintain cellular homeostasis. This protective role diminishes prior to the structural damage that normally occurs during aging. Considering that aging is the main risk factor for osteoarthritis, evaluating the expression of genes associated with autophagy in senescent cartilage might allow for the identification of potential therapeutic targets for treatment. Thus, we studied two groups of young and senescent rats. A histological analysis of cartilage and gene expression quantification for autophagy-related genes were performed. In aged cartilage, morphological changes were observed, such as an increase in cartilage degeneration as measured by the modified Mankin score, a decrease in the number of chondrocytes and collagen II (Col2a1), and an increase in matrix metalloproteinase 13 (Mmp13). Moreover, 84 genes associated with autophagy were evaluated by a PCR array analysis, and 15 of them were found to be significantly decreased with aging. Furthermore, an in silico analysis based on by two different bioinformatics software tools revealed that several processes including cellular homeostasis, autophagosome assembly, and aging—as well as several biological pathways such as autophagy, insulin-like growth factor 1 (IGF-1) signaling, PI3K (phosphoinositide 3-kinase)/AKT (serine/threonine kinase) signaling, and mammalian target of rapamycin (mTOR) signaling—were enriched. In conclusion, the analysis identified some potential targets for osteoarthritis treatment that would allow for the development of new therapeutic strategies for this chronic disease.
format Online
Article
Text
id pubmed-7697851
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-76978512020-11-29 Histological Evaluation and Gene Expression Profiling of Autophagy-Related Genes for Cartilage of Young and Senescent Rats Arias, Consuelo Saavedra, Nicolás Leal, Karla Vásquez, Bélgica Abdalla, Dulcineia S. P. Salazar, Luis A. Int J Mol Sci Article Autophagy is a cellular mechanism that protects cells from stress by digesting non-functional cellular components. In the cartilage, chondrocytes depend on autophagy as a principal mechanism to maintain cellular homeostasis. This protective role diminishes prior to the structural damage that normally occurs during aging. Considering that aging is the main risk factor for osteoarthritis, evaluating the expression of genes associated with autophagy in senescent cartilage might allow for the identification of potential therapeutic targets for treatment. Thus, we studied two groups of young and senescent rats. A histological analysis of cartilage and gene expression quantification for autophagy-related genes were performed. In aged cartilage, morphological changes were observed, such as an increase in cartilage degeneration as measured by the modified Mankin score, a decrease in the number of chondrocytes and collagen II (Col2a1), and an increase in matrix metalloproteinase 13 (Mmp13). Moreover, 84 genes associated with autophagy were evaluated by a PCR array analysis, and 15 of them were found to be significantly decreased with aging. Furthermore, an in silico analysis based on by two different bioinformatics software tools revealed that several processes including cellular homeostasis, autophagosome assembly, and aging—as well as several biological pathways such as autophagy, insulin-like growth factor 1 (IGF-1) signaling, PI3K (phosphoinositide 3-kinase)/AKT (serine/threonine kinase) signaling, and mammalian target of rapamycin (mTOR) signaling—were enriched. In conclusion, the analysis identified some potential targets for osteoarthritis treatment that would allow for the development of new therapeutic strategies for this chronic disease. MDPI 2020-11-15 /pmc/articles/PMC7697851/ /pubmed/33203108 http://dx.doi.org/10.3390/ijms21228607 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Arias, Consuelo
Saavedra, Nicolás
Leal, Karla
Vásquez, Bélgica
Abdalla, Dulcineia S. P.
Salazar, Luis A.
Histological Evaluation and Gene Expression Profiling of Autophagy-Related Genes for Cartilage of Young and Senescent Rats
title Histological Evaluation and Gene Expression Profiling of Autophagy-Related Genes for Cartilage of Young and Senescent Rats
title_full Histological Evaluation and Gene Expression Profiling of Autophagy-Related Genes for Cartilage of Young and Senescent Rats
title_fullStr Histological Evaluation and Gene Expression Profiling of Autophagy-Related Genes for Cartilage of Young and Senescent Rats
title_full_unstemmed Histological Evaluation and Gene Expression Profiling of Autophagy-Related Genes for Cartilage of Young and Senescent Rats
title_short Histological Evaluation and Gene Expression Profiling of Autophagy-Related Genes for Cartilage of Young and Senescent Rats
title_sort histological evaluation and gene expression profiling of autophagy-related genes for cartilage of young and senescent rats
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7697851/
https://www.ncbi.nlm.nih.gov/pubmed/33203108
http://dx.doi.org/10.3390/ijms21228607
work_keys_str_mv AT ariasconsuelo histologicalevaluationandgeneexpressionprofilingofautophagyrelatedgenesforcartilageofyoungandsenescentrats
AT saavedranicolas histologicalevaluationandgeneexpressionprofilingofautophagyrelatedgenesforcartilageofyoungandsenescentrats
AT lealkarla histologicalevaluationandgeneexpressionprofilingofautophagyrelatedgenesforcartilageofyoungandsenescentrats
AT vasquezbelgica histologicalevaluationandgeneexpressionprofilingofautophagyrelatedgenesforcartilageofyoungandsenescentrats
AT abdalladulcineiasp histologicalevaluationandgeneexpressionprofilingofautophagyrelatedgenesforcartilageofyoungandsenescentrats
AT salazarluisa histologicalevaluationandgeneexpressionprofilingofautophagyrelatedgenesforcartilageofyoungandsenescentrats