Cargando…
Bismuth/Porous Graphene Heterostructures for Ultrasensitive Detection of Cd (II)
Heavy metals pollution is one of the key problems of environment protection. Electrochemical methods, particularly anodic stripping voltammetry, have been proven a powerful tool for rapid detection of heavy metal ions. In the present work, a bismuth modified porous graphene (Bi@PG) electrode as an e...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7697896/ https://www.ncbi.nlm.nih.gov/pubmed/33198230 http://dx.doi.org/10.3390/ma13225102 |
Sumario: | Heavy metals pollution is one of the key problems of environment protection. Electrochemical methods, particularly anodic stripping voltammetry, have been proven a powerful tool for rapid detection of heavy metal ions. In the present work, a bismuth modified porous graphene (Bi@PG) electrode as an electrochemical sensor was adopted for the detection of heavy metal Cd(2+) in an aqueous solution. Combining excellent electronic properties in sensitivity, peak resolution, and high hydrogen over-potential of bi-continuous porous Bi with the large surface-area and high conductivity on PG, the Bi@PG electrode exhibited excellent sensing ability. The square wave anodic stripping voltammetry response showed a perfect liner range of 10(−9)–10(−8) M with a correlation coefficient of 0.9969. The limit of detection (LOD) and the limit of quantitation (LOQ) are calculated to be 0.1 and 0.34 nM with a sensitivity of 19.05 μA·nM(−1), which is relatively excellent compared to other carbon-based electrodes. Meanwhile, the Bi@PG electrode showed tremendous potential in composite detection of multifold heavy metals (such as Pb(2+) and Cd(2+)) and wider linear range. |
---|