Cargando…
Enhanced Production of Biosurfactant from Bacillus subtilis Strain Al-Dhabi-130 under Solid-State Fermentation Using Date Molasses from Saudi Arabia for Bioremediation of Crude-Oil-Contaminated Soils
Crude oil and its derivatives are the most important pollutants in natural environments. Bioremediation of crude oil using bacteria has emerged as a green cleanup approach in recent years. In this study, biosurfactant-producing Bacillus subtilis strain Al-Dhabi-130 was isolated from the marine soil...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7698024/ https://www.ncbi.nlm.nih.gov/pubmed/33203064 http://dx.doi.org/10.3390/ijerph17228446 |
Sumario: | Crude oil and its derivatives are the most important pollutants in natural environments. Bioremediation of crude oil using bacteria has emerged as a green cleanup approach in recent years. In this study, biosurfactant-producing Bacillus subtilis strain Al-Dhabi-130 was isolated from the marine soil sediment. This organism was cultured in solid-state fermentation using agro-residues to produce cost-effective biosurfactants for the bioremediation of crude-oil contaminated environments. Date molasses improved biosurfactant production and were used for further optimization studies. The traditional “one-variable-at-a-time approach”, “two-level full factorial designs”, and a response surface methodology were used to optimize the concentrations of date molasses and nutrient supplements for surfactant production. The optimum bioprocess conditions were 79.3% (v/w) moisture, 34 h incubation period, and 8.3% (v/v) glucose in date molasses. To validate the quadratic model, the production of biosurfactant was performed in triplicate experiments, with yields of 74 mg/g substrate. These findings support the applications of date molasses for the production of biosurfactants by B. subtilis strain Al-Dhabi-130. Analytical experiments revealed that the bacterial strain degraded various aromatic hydrocarbons and n-alkanes within two weeks of culture with 1% crude oil. The crude biosurfactant produced by the B. subtilis strain Al-Dhabi-130 desorbed 89% of applied crude oil from the soil sample. To conclude, biosurfactant-producing bacterial strains can increase emulsification of crude oil and support the degradation of crude oil. |
---|