Cargando…
Development of a Prediction Model to Identify Children at Risk of Future Developmental Delay at Age 4 in a Population-Based Setting
Our aim was to develop a prediction model for infants from the general population, with easily obtainable predictors, that accurately predicts risk of future developmental delay at age 4 and then assess its performance. Longitudinal cohort data were used (N = 1983), including full-term and preterm c...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7698029/ https://www.ncbi.nlm.nih.gov/pubmed/33187306 http://dx.doi.org/10.3390/ijerph17228341 |
_version_ | 1783615735539433472 |
---|---|
author | van Dokkum, Nienke H. Reijneveld, Sijmen A. Heymans, Martijn W. Bos, Arend F. de Kroon, Marlou L. A. |
author_facet | van Dokkum, Nienke H. Reijneveld, Sijmen A. Heymans, Martijn W. Bos, Arend F. de Kroon, Marlou L. A. |
author_sort | van Dokkum, Nienke H. |
collection | PubMed |
description | Our aim was to develop a prediction model for infants from the general population, with easily obtainable predictors, that accurately predicts risk of future developmental delay at age 4 and then assess its performance. Longitudinal cohort data were used (N = 1983), including full-term and preterm children. Development at age 4 was assessed using the Ages and Stages Questionnaire. Candidate predictors included perinatal and parental factors as well as growth and developmental milestones during the first two years. We applied multiple logistic regression with backwards selection and internal validation, and we assessed calibration and discriminative performance (i.e., area under the curve (AUC)). The model was evaluated in terms of sensitivity and specificity at several cut-off values. The final model included sex, maternal educational level, pre-existing maternal obesity, several milestones (smiling, speaking 2–3 word sentences, standing) and weight for height z score at age 1. The fit was good, and the discriminative performance was high (AUC: 0.837). Sensitivity and specificity were 73% and 80% at a cut-off probability of 10%. Our model is promising for use as a prediction tool in community-based settings. It could aid to identify infants in early life (age 2) with increased risk of future developmental problems at age 4 that may benefit from early interventions. |
format | Online Article Text |
id | pubmed-7698029 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-76980292020-11-29 Development of a Prediction Model to Identify Children at Risk of Future Developmental Delay at Age 4 in a Population-Based Setting van Dokkum, Nienke H. Reijneveld, Sijmen A. Heymans, Martijn W. Bos, Arend F. de Kroon, Marlou L. A. Int J Environ Res Public Health Article Our aim was to develop a prediction model for infants from the general population, with easily obtainable predictors, that accurately predicts risk of future developmental delay at age 4 and then assess its performance. Longitudinal cohort data were used (N = 1983), including full-term and preterm children. Development at age 4 was assessed using the Ages and Stages Questionnaire. Candidate predictors included perinatal and parental factors as well as growth and developmental milestones during the first two years. We applied multiple logistic regression with backwards selection and internal validation, and we assessed calibration and discriminative performance (i.e., area under the curve (AUC)). The model was evaluated in terms of sensitivity and specificity at several cut-off values. The final model included sex, maternal educational level, pre-existing maternal obesity, several milestones (smiling, speaking 2–3 word sentences, standing) and weight for height z score at age 1. The fit was good, and the discriminative performance was high (AUC: 0.837). Sensitivity and specificity were 73% and 80% at a cut-off probability of 10%. Our model is promising for use as a prediction tool in community-based settings. It could aid to identify infants in early life (age 2) with increased risk of future developmental problems at age 4 that may benefit from early interventions. MDPI 2020-11-11 2020-11 /pmc/articles/PMC7698029/ /pubmed/33187306 http://dx.doi.org/10.3390/ijerph17228341 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article van Dokkum, Nienke H. Reijneveld, Sijmen A. Heymans, Martijn W. Bos, Arend F. de Kroon, Marlou L. A. Development of a Prediction Model to Identify Children at Risk of Future Developmental Delay at Age 4 in a Population-Based Setting |
title | Development of a Prediction Model to Identify Children at Risk of Future Developmental Delay at Age 4 in a Population-Based Setting |
title_full | Development of a Prediction Model to Identify Children at Risk of Future Developmental Delay at Age 4 in a Population-Based Setting |
title_fullStr | Development of a Prediction Model to Identify Children at Risk of Future Developmental Delay at Age 4 in a Population-Based Setting |
title_full_unstemmed | Development of a Prediction Model to Identify Children at Risk of Future Developmental Delay at Age 4 in a Population-Based Setting |
title_short | Development of a Prediction Model to Identify Children at Risk of Future Developmental Delay at Age 4 in a Population-Based Setting |
title_sort | development of a prediction model to identify children at risk of future developmental delay at age 4 in a population-based setting |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7698029/ https://www.ncbi.nlm.nih.gov/pubmed/33187306 http://dx.doi.org/10.3390/ijerph17228341 |
work_keys_str_mv | AT vandokkumnienkeh developmentofapredictionmodeltoidentifychildrenatriskoffuturedevelopmentaldelayatage4inapopulationbasedsetting AT reijneveldsijmena developmentofapredictionmodeltoidentifychildrenatriskoffuturedevelopmentaldelayatage4inapopulationbasedsetting AT heymansmartijnw developmentofapredictionmodeltoidentifychildrenatriskoffuturedevelopmentaldelayatage4inapopulationbasedsetting AT bosarendf developmentofapredictionmodeltoidentifychildrenatriskoffuturedevelopmentaldelayatage4inapopulationbasedsetting AT dekroonmarloula developmentofapredictionmodeltoidentifychildrenatriskoffuturedevelopmentaldelayatage4inapopulationbasedsetting |