Cargando…
Identification of Building Damage from UAV-Based Photogrammetric Point Clouds Using Supervoxel Segmentation and Latent Dirichlet Allocation Model
Accurate assessment of building damage is very important for disaster response and rescue. Traditional damage detection techniques using 2D features at a single observing angle cannot objectively and accurately reflect the structural damage conditions. With the development of unmanned aerial vehicle...
Autores principales: | Liu, Chaoxian, Sui, Haigang, Huang, Lihong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7698038/ https://www.ncbi.nlm.nih.gov/pubmed/33203060 http://dx.doi.org/10.3390/s20226499 |
Ejemplares similares
-
Unsupervised segmentation of greenhouse plant images based on modified Latent Dirichlet Allocation
por: Wang, Yi, et al.
Publicado: (2018) -
Context-Aware Latent Dirichlet Allocation for Topic Segmentation
por: Li, Wenbo, et al.
Publicado: (2020) -
Latent Dirichlet Allocation modeling of environmental microbiomes
por: Kim, Anastasiia, et al.
Publicado: (2023) -
High-Precision Plane Detection Method for Rock-Mass Point Clouds Based on Supervoxel
por: Yu, Dongbo, et al.
Publicado: (2020) -
Latent Dirichlet Allocation in predicting clinical trial terminations
por: Geletta, Simon, et al.
Publicado: (2019)