Cargando…
Mechanical Pressure Characterization of CNT-Graphene Composite Material
Carbon nanotubes (CNTs) and graphene are extensively studied materials in the field of sensing technology and other electronic devices due to their better functional and structural properties. Additionally, more attention is given to utilize these materials as a filler to reinforce the properties of...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7698087/ https://www.ncbi.nlm.nih.gov/pubmed/33198096 http://dx.doi.org/10.3390/mi11111000 |
Sumario: | Carbon nanotubes (CNTs) and graphene are extensively studied materials in the field of sensing technology and other electronic devices due to their better functional and structural properties. Additionally, more attention is given to utilize these materials as a filler to reinforce the properties of other materials. However, the role of weight percentage of CNTs in the piezoresistive properties of these materials has not been reported yet. In this work, CNT-graphene composite-based piezoresistive pressure samples in the form of pellets with different weight percentages of CNTs were fabricated and characterized. All the samples exhibit a decrease in the direct current (DC) resistance with the increase in external uniaxial applied pressure from 0 to 74.8 kNm(−2). However, under the same external uniaxial applied pressure, the DC resistance exhibit more decrease as the weight percentage of the CNTs increase in the composites. |
---|