Cargando…
Quantitative Microbial Risk Assessment Based on Whole Genome Sequencing Data: Case of Listeria monocytogenes
The application of high-throughput DNA sequencing technologies (WGS) data remain an increasingly discussed but vastly unexplored resource in the public health domain of quantitative microbial risk assessment (QMRA). This is due to challenges including high dimensionality of WGS data and heterogeneit...
Autores principales: | Njage, Patrick Murigu Kamau, Leekitcharoenphon, Pimlapas, Hansen, Lisbeth Truelstrup, Hendriksen, Rene S., Faes, Christel, Aerts, Marc, Hald, Tine |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7698238/ https://www.ncbi.nlm.nih.gov/pubmed/33187247 http://dx.doi.org/10.3390/microorganisms8111772 |
Ejemplares similares
-
Application of Whole‐Genome Sequences and Machine Learning in Source Attribution of Salmonella Typhimurium
por: Munck, Nanna, et al.
Publicado: (2020) -
Machine Learning Methods as a Tool for Predicting Risk of Illness Applying Next‐Generation Sequencing Data
por: Njage, Patrick Murigu Kamau, et al.
Publicado: (2018) -
An Overview of Antimicrobial Resistance Profiles of Publicly Available Salmonella Genomes with Sufficient Quality and Metadata
por: Nuanmuang, Narong, et al.
Publicado: (2023) -
Source Attribution of Human Campylobacteriosis Using Whole-Genome Sequencing Data and Network Analysis
por: Wainaina, Lynda, et al.
Publicado: (2022) -
Initial Transcriptomic Response and Adaption of Listeria monocytogenes to Desiccation on Food Grade Stainless Steel
por: Kragh, Martin Laage, et al.
Publicado: (2020)