Cargando…
DLNR-SIQA: Deep Learning-Based No-Reference Stitched Image Quality Assessment
Due to recent advancements in virtual reality (VR) and augmented reality (AR), the demand for high quality immersive contents is a primary concern for production companies and consumers. Similarly, the topical record-breaking performance of deep learning in various domains of artificial intelligence...
Autores principales: | Ullah, Hayat, Irfan, Muhammad, Han, Kyungjin, Lee, Jong Weon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7698287/ https://www.ncbi.nlm.nih.gov/pubmed/33198159 http://dx.doi.org/10.3390/s20226457 |
Ejemplares similares
-
A deep learning-based stripe self-correction method for stitched microscopic images
por: Wang, Shu, et al.
Publicado: (2023) -
An ECG Stitching Scheme for Driver Arrhythmia Classification Based on Deep Learning
por: Kim, Do Hoon, et al.
Publicado: (2023) -
Entropy-Based Combined Metric for Automatic Objective Quality Assessment of Stitched Panoramic Images
por: Okarma, Krzysztof, et al.
Publicado: (2021) -
Automatic 360° Mono-Stereo Panorama Generation Using a Cost-Effective Multi-Camera System
por: Ullah, Hayat, et al.
Publicado: (2020) -
“Stacked Stitch” for efficient closure of deep cutaneous defects
por: Glade, Daniel C., et al.
Publicado: (2023)