Cargando…
The development and implementation of an oxygen treatment solution for health facilities in low and middle-income countries
BACKGROUND: Oxygen reduces mortality from severe pneumonia and is a vital part of case management, but achieving reliable access to oxygen is challenging in low and middle-income country (LMIC) settings. We developed and field tested two oxygen supply solutions suitable for the realities of LMIC hea...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Society of Global Health
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7698571/ https://www.ncbi.nlm.nih.gov/pubmed/33274064 http://dx.doi.org/10.7189/jgh.10.020425 |
Sumario: | BACKGROUND: Oxygen reduces mortality from severe pneumonia and is a vital part of case management, but achieving reliable access to oxygen is challenging in low and middle-income country (LMIC) settings. We developed and field tested two oxygen supply solutions suitable for the realities of LMIC health facilities. METHODS: A Health Needs Assessment identified a technology gap preventing reliable oxygen supplies in Gambian hospitals. We used simultaneous engineering to develop two solutions: a Mains-Power Storage (Mains-PS) system consisting of an oxygen concentrator and batteries connected to mains power, and a Solar-Power Storage (Solar-PS) system (with batteries charged by photovoltaic panels) and evaluated them in health facilities in The Gambia and Fiji to assess reliability, usability and costs. RESULTS: The Mains-PS system delivered the specified ≥85% (±3%) oxygen concentration in 100% of 1-2 weekly measurements over 12 months, which was available to 100% of hypoxaemic patients, and 100% of users rated ease-of-use as at least ‘good’ (90% very good or excellent). The Solar-PS system delivered ≥85% ± 3%) oxygen concentration in 100% of 1-2 weekly measurements, was available to 100% of patients needing oxygen, and 100% of users rated ease-of-use at least very good. Costs for the systems (in US dollars) were: PS$9519, Solar-PS standard version $20 718. The of oxygen for a standardised 30-bed health facility using 1.7 million litres of oxygen per year was: for cylinders 3.2 cents (c)/L in The Gambia and 6.8 c/L in Fiji, for the PS system 1.2 c/L in both countries, and for the Solar-PS system 1.5 c/L in both countries. CONCLUSIONS: The oxygen systems developed and tested delivered high-quality, reliable, cost-efficient oxygen in LMIC contexts, and were easy to operate. Reliable oxygen supplies are achievable in LMIC health facilities like those in The Gambia and Fiji. |
---|