Cargando…
Multi-Branch Convolutional Neural Network for Automatic Sleep Stage Classification with Embedded Stage Refinement and Residual Attention Channel Fusion
Automatic sleep stage classification of multi-channel sleep signals can help clinicians efficiently evaluate an individual’s sleep quality and assist in diagnosing a possible sleep disorder. To obtain accurate sleep classification results, the processing flow of results from signal preprocessing and...
Autores principales: | Zhu, Tianqi, Luo, Wei, Yu, Feng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7698838/ https://www.ncbi.nlm.nih.gov/pubmed/33218040 http://dx.doi.org/10.3390/s20226592 |
Ejemplares similares
-
Convolution- and Attention-Based Neural Network for Automated Sleep Stage Classification
por: Zhu, Tianqi, et al.
Publicado: (2020) -
Fast Convolutional Method for Automatic Sleep Stage Classification
por: Yulita, Intan Nurma, et al.
Publicado: (2018) -
An Attention-Guided Spatiotemporal Graph Convolutional Network for Sleep Stage Classification
por: Li, Menglei, et al.
Publicado: (2022) -
An End-to-End Multi-Channel Convolutional Bi-LSTM Network for Automatic Sleep Stage Detection
por: Toma, Tabassum Islam, et al.
Publicado: (2023) -
Automatic and Accurate Sleep Stage Classification via a Convolutional Deep Neural Network and Nanomembrane Electrodes
por: Kwon, Kangkyu, et al.
Publicado: (2022)