Cargando…
Residual Strength Prediction of Aluminum Panels with Multiple Site Damage Using Artificial Neural Networks
Multiple site damage (MSD) cracks are small fatigue cracks that may accumulate at the sides of highly loaded holes in aging aircraft structures. The presence of MSD cracks can drastically reduce the residual strength of fuselage panels. In this paper, artificial neural networks (ANN) modeling is use...
Autores principales: | Hijazi, Ala, Al-Dahidi, Sameer, Altarazi, Safwan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7698861/ https://www.ncbi.nlm.nih.gov/pubmed/33218153 http://dx.doi.org/10.3390/ma13225216 |
Ejemplares similares
-
Machine Learning Models for Predicting and Classifying the Tensile Strength of Polymeric Films Fabricated via Different Production Processes
por: Altarazi, Safwan, et al.
Publicado: (2019) -
Short-Time Wind Speed Forecast Using Artificial Learning-Based Algorithms
por: Ibrahim, Mariam, et al.
Publicado: (2020) -
Optimization of Geometry Parameters of Inkjet-Printed Silver Nanoparticle Traces on PDMS Substrates Using Response Surface Methodology
por: Abu-Khalaf, Jumana, et al.
Publicado: (2019) -
Residual Compressive Strength of Short Tubular Steel Columns with Artificially Fabricated Local Corrosion Damage
por: Toledo, Kyra Kamille, et al.
Publicado: (2020) -
Damage Detection in Flat Panels by Guided Waves Based Artificial Neural Network Trained through Finite Element Method
por: Perfetto, Donato, et al.
Publicado: (2021)