Cargando…
Transferrin-Conjugated pH-Responsive γ-Cyclodextrin Nanoparticles for Antitumoral Topotecan Delivery
In this study, we developed γ-cyclodextrin-based multifunctional nanoparticles (NPs) for tumor-targeted therapy. The NPs were self-assembled using a γ-cyclodextrin (γCD) coupled with phenylacetic acid (PA), 2,3-dimethylmaleic anhydride (DMA), poly(ethylene glycol) (PEG), and transferrin (Tf), termed...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7698888/ https://www.ncbi.nlm.nih.gov/pubmed/33218116 http://dx.doi.org/10.3390/pharmaceutics12111109 |
Sumario: | In this study, we developed γ-cyclodextrin-based multifunctional nanoparticles (NPs) for tumor-targeted therapy. The NPs were self-assembled using a γ-cyclodextrin (γCD) coupled with phenylacetic acid (PA), 2,3-dimethylmaleic anhydride (DMA), poly(ethylene glycol) (PEG), and transferrin (Tf), termed γCDP-(DMA/PEG-Tf) NPs. These γCDP-(DMA/PEG-Tf) NPs are effective in entrapping topotecan (TPT, as a model antitumor drug) resulting from the ionic interaction between pH-responsive DMA and TPT or the host–guest interaction between γCDP and TPT. More importantly, the γCDP-(DMA/PEG-Tf) NPs can induce ionic repulsion at an endosomal pH (~6.0) resulting from the chemical detachment of DMA from γCDP, which is followed by extensive TPT release. We demonstrated that γCDP-(DMA/PEG-Tf) NPs led to a significant increase in cellular uptake and MDA-MB-231 tumor cell death. In vivo animal studies using an MDA-MB-231 tumor xenografted mice model supported the finding that γCDP-(DMA/PEG-Tf) NPs are effective carriers of TPT to Tf receptor-positive MDA-MB-231 tumor cells, promoting drug uptake into the tumors through the Tf ligand-mediated endocytic pathway and increasing their toxicity due to DMA-mediated cytosolic TPT delivery. |
---|