Cargando…
A Novel MIMO-SAR System Based on Simultaneous Digital Beam Forming of Both Transceiver and Receiver
Orthogonal frequency division multiplexing (OFDM) chirp waveform, which is composed of two or more successive identical linear frequency modulated sub pulses, is a newly proposed orthogonal waveform scheme for multi-input multi-output (MIMO) synthetic aperture radar (SAR) systems. However, according...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7698899/ https://www.ncbi.nlm.nih.gov/pubmed/33218098 http://dx.doi.org/10.3390/s20226604 |
Sumario: | Orthogonal frequency division multiplexing (OFDM) chirp waveform, which is composed of two or more successive identical linear frequency modulated sub pulses, is a newly proposed orthogonal waveform scheme for multi-input multi-output (MIMO) synthetic aperture radar (SAR) systems. However, according to the waveform model, there will be range ambiguity if the mapping width exceeds the maximum unambiguous width determined by the transmitted signal. This greatly limits its application in high-resolution wide-swath (HRWS) remote sensing. The traditional system divides the echoes by digital beam forming (DBF) to solve this problem, but the energy utilization rate is low. A MIMO-SAR system using simultaneous digital beam forming of both transceiver and receiver to avoid range ambiguity is designed in this paper. Compared with traditional system, the novel system designed in this paper obtain higher energy utilization and waveform orthogonality. |
---|