Cargando…
Recent Progress in Fabrication of Antimony/Bismuth Chalcohalides for Lead-Free Solar Cell Applications
Despite their comparable performance to commercial solar systems, lead-based perovskite (Pb-perovskite) solar cells exhibit limitations including Pb toxicity and instability for industrial applications. To address these issues, two types of Pb-free materials have been proposed as alternatives to Pb-...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7698906/ https://www.ncbi.nlm.nih.gov/pubmed/33218079 http://dx.doi.org/10.3390/nano10112284 |
Sumario: | Despite their comparable performance to commercial solar systems, lead-based perovskite (Pb-perovskite) solar cells exhibit limitations including Pb toxicity and instability for industrial applications. To address these issues, two types of Pb-free materials have been proposed as alternatives to Pb-perovskite: perovskite-based and non-perovskite-based materials. In this review, we summarize the recent progress on solar cells based on antimony/bismuth (Sb/Bi) chalcohalides, representing Sb/Bi non-perovskite semiconductors containing chalcogenides and halides. Two types of ternary and quaternary chalcohalides are described, with their classification predicated on the fabrication method. We also highlight their utility as interfacial layers for improving other solar cells. This review provides clues for improving the performances of devices and design of multifunctional solar systems. |
---|