Cargando…
NI-13 The effectiveness and limitation of survival prediction in primary glioblastoma using machine learning-based texture analysis
Introduction: Clinical application of survival prediction of primary glioblastoma (pGBM) using preoperative images remains challenging due to a lack of robustness and standardization of the method. This research focused on validating a machine learning-based texture analysis model for this purpose u...
Autores principales: | Umehara, Toru, Kinoshita, Manabu, Sasaki, Takahiro, Arita, Hideyuki, Yoshioka, Ema, Shofuda, Tomoko, Kodama, Yoshinori, Hirayama, Ryuichi, Kijima, Noriyuki, Kagawa, Naoki, Okita, Yoshiko, Takano, Koji, Uda, Takehiro, Fukai, Junya, Sakamoto, Daisuke, Mori, Kanji, Kanemura, Yonehiro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7699060/ http://dx.doi.org/10.1093/noajnl/vdaa143.060 |
Ejemplares similares
-
NI-13 PREDICTION OF PROGNOSIS IN NEWLY DIAGNOSED GLIOBLASTOMA USING MACHINE LEARNING-BASED TEXTURE ANALYSIS OF PREOPERATIVE MRI
por: Umehara, Toru, et al.
Publicado: (2019) -
MPC-04 MOLECULAR FEATURES AND CLINICAL OUTCOMES OF ELDERLY GLIOBLASTOMA PATIENTS: ANALYSES OF KANSAI NETWORK AND TCGA COHORTS
por: Fukai, Junya, et al.
Publicado: (2019) -
MPC-02 Prognostic effects of molecular factors in elderly patients with IDH-wildtype Glioblastomas
por: Fukai, Junya, et al.
Publicado: (2020) -
Distribution differences in prognostic copy number alteration profiles in IDH-wild-type glioblastoma cause survival discrepancies across cohorts
por: Umehara, Toru, et al.
Publicado: (2019) -
Radiomics and MGMT promoter methylation for prognostication of newly diagnosed glioblastoma
por: Sasaki, Takahiro, et al.
Publicado: (2019)