Cargando…
CO-01 Prediction of pathological and radiological nature of glioma by mass spectrometry combined with machine learning
BACKGROUND: We have previously developed a medical diagnostic pipeline that employs mass spectrometry and machine learning. It does not annotate molecular markers that are specific to cancer but uses entire mass spectra for predicting the properties of glioma. OBJECT: To validate the power of our di...
Autores principales: | Kawataki, Tomoyuki, Hanihara, Mitsuto, Suzuki, Keiko, Yoshimura, Kentaro, Takeda, Sen, Kinouchi, Hiroyuki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7699122/ http://dx.doi.org/10.1093/noajnl/vdaa143.027 |
Ejemplares similares
-
Prediction of Pathological and Radiological Nature of Glioma by Mass Spectrometry Combined With Machine Learning
por: Suzuki, Keiko, et al.
Publicado: (2021) -
NI-18 A Quantitative Analysis of Intraoperative 3T-Diffusion Tensor Imaging parameters for Functional Prediction with Motor Eloquent Glioma Patients
por: Kawataki, Tomoyuki, et al.
Publicado: (2021) -
BT-7 Long-term outcome and late adverse effects of intracranial primary germ cell tumor
por: Hanihara, Mitsuto, et al.
Publicado: (2021) -
Nonconvulsive status epilepticus due to pneumocephalus after suprasellar arachnoid cyst fenestration with transsphenoidal surgery: illustrative case
por: Kagami, Yohei, et al.
Publicado: (2022) -
Assessment of MGMT methylation status using high-performance liquid chromatography in newly diagnosed glioblastoma
por: Hanihara, Mitsuto, et al.
Publicado: (2020)