Cargando…
Building a Graph Signal Processing Model Using Dynamic Time Warping for Load Disaggregation
Building on recent unsupervised Non-intrusive load monitoring (NILM) algorithms that use graph Laplacian regularization (GLR) and achieve state-of-the-art performance, in this paper, we propose a novel unsupervised approach to design an underlying graph to model the correlation within time-series sm...
Autores principales: | He, Kanghang, Stankovic, Vladimir, Stankovic, Lina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7699329/ https://www.ncbi.nlm.nih.gov/pubmed/33228064 http://dx.doi.org/10.3390/s20226628 |
Ejemplares similares
-
Vertex-frequency analysis of graph signals
por: Stanković, Ljubisa, et al.
Publicado: (2018) -
Explainability-Informed Feature Selection and Performance Prediction for Nonintrusive Load Monitoring †
por: Mollel, Rachel Stephen, et al.
Publicado: (2023) -
Graph-Based Feature Weight Optimisation and Classification of Continuous Seismic Sensor Array Recordings
por: Li, Jiangfeng, et al.
Publicado: (2022) -
Classification of genomic signals using dynamic time warping
por: Skutkova, Helena, et al.
Publicado: (2013) -
An electrical load measurements dataset of United Kingdom households from a two-year longitudinal study
por: Murray, David, et al.
Publicado: (2017)