Cargando…

Effect of Xylo-Oligosaccharides Supplementation by Drinking Water on the Bone Properties and Related Calcium Transporters in Growing Mice

Xylo-oligosaccharides (XOS), non-digestible oligosaccharides, have the potential to regulate intestinal microorganisms, and thus, improve host health, but little evidence exists for the prebiotic effects on bone health. This study evaluates the dose-response effect of XOS supplementation on bone pro...

Descripción completa

Detalles Bibliográficos
Autores principales: Gao, Hang, Zhou, Zhenlei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7699350/
https://www.ncbi.nlm.nih.gov/pubmed/33228037
http://dx.doi.org/10.3390/nu12113542
Descripción
Sumario:Xylo-oligosaccharides (XOS), non-digestible oligosaccharides, have the potential to regulate intestinal microorganisms, and thus, improve host health, but little evidence exists for the prebiotic effects on bone health. This study evaluates the dose-response effect of XOS supplementation on bone properties, the morphology of the intestine, cecum pH, and cecum wall weight, as well as the related calcium transporters. Ninety-six 28-day-old male mice were randomized into one of four groups, fed the same commercial diet, and given different types of deionized water containing 0, 1, 2, or 4% XOS by concentration for 30 days. Eight mice were randomly selected to accomplish particular tasks every 10 days. No significant differences in serum Ca and P levels and growth performance were observed among the four studied groups. XOS intervention significantly decreased cecum pH and increased cecum wall weight in a dose-dependent manner. At the late growth stage, compared with 0% XOS, the bone mineral density (BMD) and bone-breaking strength in 4% XOS were significantly higher. The bone crystallinity with 4% XOS, measured by Raman spectrum, was significantly enhanced compared to that with 0% XOS during later growth. The villus height and villus height to crypt depth (VH:CD) were enhanced with an increase of XOS concentration during the later stage of growth. The expression of transient receptor potential vanillin receptor 6 (TRPV6) and Na(+)/Ca(2+) exchanger 1 (NCX1) in the duodenum were enhanced by XOS supplementation. XOS exerted a positive influence on bone properties by decreasing the cecum pH, increasing the cecum wall and villus structure, and upregulating the expression of related calcium transporters.