Cargando…
Remaining Useful Life Prognosis for Turbofan Engine Using Explainable Deep Neural Networks with Dimensionality Reduction
This study prognoses the remaining useful life of a turbofan engine using a deep learning model, which is essential for the health management of an engine. The proposed deep learning model affords a significantly improved accuracy by organizing networks with a one-dimensional convolutional neural ne...
Autores principales: | Hong, Chang Woo, Lee, Changmin, Lee, Kwangsuk, Ko, Min-Seung, Kim, Dae Eun, Hur, Kyeon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7699375/ https://www.ncbi.nlm.nih.gov/pubmed/33228051 http://dx.doi.org/10.3390/s20226626 |
Ejemplares similares
-
Remaining useful life prognosis of turbofan engines based on deep feature extraction and fusion
por: Peng, Cheng, et al.
Publicado: (2022) -
A Remaining Useful Life Prognosis of Turbofan Engine Using Temporal and Spatial Feature Fusion
por: Peng, Cheng, et al.
Publicado: (2021) -
Advanced Control of Turbofan Engines
por: Richter, Hanz
Publicado: (2012) -
A Spatio-Temporal Attention Mechanism Based Approach for Remaining Useful Life Prediction of Turbofan Engine
por: Peng, Cheng, et al.
Publicado: (2022) -
Optimized modeling of energy and environmental metrics of mixed flow turbofan engine used regional aircraft
por: UÇAR, Ukbe Usame, et al.
Publicado: (2023)