Cargando…
Towards Ultrahigh Performance Concrete Produced with Aluminum Oxide Nanofibers and Reduced Quantities of Silica Fume
Ultrahigh performance concrete (UHPC), which is characterized by dense microstructure and strain hardening behavior, provides exceptional durability and a new level of structural response to modern structures. However, the design of the UHPC matrix often requires the use of high quantities of supple...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7699390/ https://www.ncbi.nlm.nih.gov/pubmed/33228067 http://dx.doi.org/10.3390/nano10112291 |
_version_ | 1783616038209847296 |
---|---|
author | Muzenski, Scott Flores-Vivian, Ismael Farahi, Behrouz Sobolev, Konstantin |
author_facet | Muzenski, Scott Flores-Vivian, Ismael Farahi, Behrouz Sobolev, Konstantin |
author_sort | Muzenski, Scott |
collection | PubMed |
description | Ultrahigh performance concrete (UHPC), which is characterized by dense microstructure and strain hardening behavior, provides exceptional durability and a new level of structural response to modern structures. However, the design of the UHPC matrix often requires the use of high quantities of supplementary cementitious materials, such as silica fume, which can significantly increase the cost and elevate the production expenses associated with silica fume handling. This paper demonstrates that a fiber-reinforced composite with properties similar to conventional UHPC can be realized with very low quantities of silica fume, such as 1% by mass of cementitious materials. The proposed UHPC is based on reference Type I cement or Type V Portland cement with very low C(3)A (<1%) that also complies with Class H oil well cement specification, silica fume, small quantities of Al(2)O(3) nanofibers, and high-density polyethylene or polyvinyl alcohol macro fibers. Previous research has demonstrated that nanofibers act as a seeding agent to promote the formation of compact and nanoreinforced calcium silicate hydrate (C-S-H) clusters within the interparticle and nanofiber spaces, providing a nanoreinforcing effect. This approach produces a denser and stronger matrix. This research expands upon this principle by adding synthetic fibers to ultrahigh strength cement-based composites to form a material with properties approaching that of UHPC. It is indicated that the developed material provides improved strain hardening and compressive strength at the level of 160 MPa. |
format | Online Article Text |
id | pubmed-7699390 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-76993902020-11-29 Towards Ultrahigh Performance Concrete Produced with Aluminum Oxide Nanofibers and Reduced Quantities of Silica Fume Muzenski, Scott Flores-Vivian, Ismael Farahi, Behrouz Sobolev, Konstantin Nanomaterials (Basel) Article Ultrahigh performance concrete (UHPC), which is characterized by dense microstructure and strain hardening behavior, provides exceptional durability and a new level of structural response to modern structures. However, the design of the UHPC matrix often requires the use of high quantities of supplementary cementitious materials, such as silica fume, which can significantly increase the cost and elevate the production expenses associated with silica fume handling. This paper demonstrates that a fiber-reinforced composite with properties similar to conventional UHPC can be realized with very low quantities of silica fume, such as 1% by mass of cementitious materials. The proposed UHPC is based on reference Type I cement or Type V Portland cement with very low C(3)A (<1%) that also complies with Class H oil well cement specification, silica fume, small quantities of Al(2)O(3) nanofibers, and high-density polyethylene or polyvinyl alcohol macro fibers. Previous research has demonstrated that nanofibers act as a seeding agent to promote the formation of compact and nanoreinforced calcium silicate hydrate (C-S-H) clusters within the interparticle and nanofiber spaces, providing a nanoreinforcing effect. This approach produces a denser and stronger matrix. This research expands upon this principle by adding synthetic fibers to ultrahigh strength cement-based composites to form a material with properties approaching that of UHPC. It is indicated that the developed material provides improved strain hardening and compressive strength at the level of 160 MPa. MDPI 2020-11-19 /pmc/articles/PMC7699390/ /pubmed/33228067 http://dx.doi.org/10.3390/nano10112291 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Muzenski, Scott Flores-Vivian, Ismael Farahi, Behrouz Sobolev, Konstantin Towards Ultrahigh Performance Concrete Produced with Aluminum Oxide Nanofibers and Reduced Quantities of Silica Fume |
title | Towards Ultrahigh Performance Concrete Produced with Aluminum Oxide Nanofibers and Reduced Quantities of Silica Fume |
title_full | Towards Ultrahigh Performance Concrete Produced with Aluminum Oxide Nanofibers and Reduced Quantities of Silica Fume |
title_fullStr | Towards Ultrahigh Performance Concrete Produced with Aluminum Oxide Nanofibers and Reduced Quantities of Silica Fume |
title_full_unstemmed | Towards Ultrahigh Performance Concrete Produced with Aluminum Oxide Nanofibers and Reduced Quantities of Silica Fume |
title_short | Towards Ultrahigh Performance Concrete Produced with Aluminum Oxide Nanofibers and Reduced Quantities of Silica Fume |
title_sort | towards ultrahigh performance concrete produced with aluminum oxide nanofibers and reduced quantities of silica fume |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7699390/ https://www.ncbi.nlm.nih.gov/pubmed/33228067 http://dx.doi.org/10.3390/nano10112291 |
work_keys_str_mv | AT muzenskiscott towardsultrahighperformanceconcreteproducedwithaluminumoxidenanofibersandreducedquantitiesofsilicafume AT floresvivianismael towardsultrahighperformanceconcreteproducedwithaluminumoxidenanofibersandreducedquantitiesofsilicafume AT farahibehrouz towardsultrahighperformanceconcreteproducedwithaluminumoxidenanofibersandreducedquantitiesofsilicafume AT sobolevkonstantin towardsultrahighperformanceconcreteproducedwithaluminumoxidenanofibersandreducedquantitiesofsilicafume |