Cargando…

Differential Effects of Maternal High Fat Diet During Pregnancy and Lactation on Taste Preferences in Rats

Maternal intake of high fat diet (HFD) increases risk for obesity and metabolic disorders in offspring. Developmental programming of taste preference is a potential mechanism by which this occurs. Whether maternal HFD during pregnancy, lactation, or both, imposes greater risks for altered taste pref...

Descripción completa

Detalles Bibliográficos
Autores principales: Mezei, Gabor C., Ural, Serdar H., Hajnal, Andras
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7699468/
https://www.ncbi.nlm.nih.gov/pubmed/33233529
http://dx.doi.org/10.3390/nu12113553
Descripción
Sumario:Maternal intake of high fat diet (HFD) increases risk for obesity and metabolic disorders in offspring. Developmental programming of taste preference is a potential mechanism by which this occurs. Whether maternal HFD during pregnancy, lactation, or both, imposes greater risks for altered taste preferences in adult offspring remains a question, and in turn, was investigated in the present study. Four groups of offspring were generated based on maternal HFD access: (1) HFD during pregnancy and lactation (HFD); (2) HFD during pregnancy (HFD-pregnancy); (3) HFD during lactation (HFD-lactation); and (4) normal diet (ND) during pregnancy and lactation (ND). Adult offspring 70 days of age underwent sensory and motivational taste preference testing with various concentrations of sucrose and Intralipid solutions using brief-access automated gustometers (Davis-rigs) and 24 h two-bottle choice tests, respectively. To control for post-gestational diet effects, offspring in all experimental groups were weaned on ND, and did not differ in body weight or glucose tolerance at the time of testing. Offspring exposed to maternal HFD showed increased sensory taste responses for 0.3, 0.6, 1.2 M sucrose solutions in HFD and 0.6 M in HFD-pregnancy groups, compared to animals exposed to ND. Similar effects were noted for lower concentrations of Intralipid in HFD (0.05, 0.10%) and HFD-pregnancy (0.05, 0.10, 0.5%) groups. The HFD-lactation group showed an opposite, diminished responsiveness for sucrose at the highest concentrations (0.9, 1.2, 1.5 M), but not for Intralipid, compared to ND animals. Extended-access two-bottle tests did not reveal major difference across the groups. Our study shows that maternal HFD during pregnancy and lactation has markedly different effects on preferences for palatable sweet and fatty solutions in adult offspring and suggests that such developmental programing may primarily affect gustatory mechanisms. Future studies are warranted for determining the impact of taste changes on development of obesity and metabolic disorders in a “real” food environment with food choices available, as well as to identify specific underlying mechanisms.