Cargando…
A Machine Learning Model Accurately Predicts Ulcerative Colitis Activity at One Year in Patients Treated with Anti-Tumour Necrosis Factor α Agents
Background and objectives: The biological treatment is a promising therapeutic option for ulcerative colitis (UC) patients, being able to induce subclinical and long-term remission. However, the relatively high costs and the potential toxicity have led to intense debates over the most appropriate cr...
Autores principales: | Popa, Iolanda Valentina, Burlacu, Alexandru, Mihai, Catalina, Prelipcean, Cristina Cijevschi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7699478/ https://www.ncbi.nlm.nih.gov/pubmed/33233514 http://dx.doi.org/10.3390/medicina56110628 |
Ejemplares similares
-
Laboratory Data and IBDQ—Effective Predictors for the Non-Invasive Machine-Learning-Based Prediction of Endoscopic Activity in Ulcerative Colitis
por: Gavrilescu, Otilia, et al.
Publicado: (2023) -
COVID-19 and Inflammatory Bowel Diseases: Risk Assessment, Shared Molecular Pathways, and Therapeutic Challenges
por: Popa, Iolanda Valentina, et al.
Publicado: (2020) -
Extrapancreatic necrosis volume: A new tool in acute pancreatitis severity assessment?
por: Cucuteanu, Bogdan, et al.
Publicado: (2021) -
Impact of COVID-19 Pandemic on the Quality of Life of IBD Patients
por: Gavrilescu, Otilia, et al.
Publicado: (2022) -
New onset severe ulcerative colitis following Ixekizumab therapy
por: Morosanu, Alina Mihaela, et al.
Publicado: (2022)