Cargando…

Nimotuzumab Site-Specifically Labeled with (89)Zr and (225)Ac Using SpyTag/SpyCatcher for PET Imaging and Alpha Particle Radioimmunotherapy of Epidermal Growth Factor Receptor Positive Cancers

SIMPLE SUMMARY: Monoclonal antibodies (IgG) are excellent probes for targeting cell surface receptors for imaging and therapeutic applications. These theranostic agents are often developed by randomly conjugating radioisotopes/drugs/chelators to the primary amine of lysine or the sulfhydryl groups o...

Descripción completa

Detalles Bibliográficos
Autores principales: Solomon, Viswas Raja, Barreto, Kris, Bernhard, Wendy, Alizadeh, Elahe, Causey, Patrick, Perron, Randy, Gendron, Denise, Alam, Md. Kausar, Carr, Adriana, Geyer, C. Ronald, Fonge, Humphrey
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7699480/
https://www.ncbi.nlm.nih.gov/pubmed/33233524
http://dx.doi.org/10.3390/cancers12113449
Descripción
Sumario:SIMPLE SUMMARY: Monoclonal antibodies (IgG) are excellent probes for targeting cell surface receptors for imaging and therapeutic applications. These theranostic agents are often developed by randomly conjugating radioisotopes/drugs/chelators to the primary amine of lysine or the sulfhydryl groups of cysteine on the antibody. Random conjugation often alters the properties of the antibody. We have site-specifically radiolabeled nimotuzumab an anti-epidermal growth factor receptor (EGFR) monoclonal antibody with 89Zr and 225Ac using SpyTag: ∆N-SpyCatcher for positron emission tomography (PET) imaging and alpha particle radiotherapy, and evaluated these agents in a model of EGFR-positive triple negative breast cancer (TNBC). Nimotuzumab-SpyTag-∆N-SpyCatcher constructs showed improved binding in vitro compared with randomly conjugated constructs. 89Zr-nimotuzumab-SpyTag-∆N-SpyCatcher specifically delineated EGFR-positive xenograft in vivo using microPET/CT imaging. Compared with control treatment groups, 225Ac-nimotuzumab-SpyTag-∆N-SpyCatcher more than doubled the survival of mice bearing EGFR-positive MDA-MB-231 TNBC xenograft. This work highlights a facile method to site-specifically radiolabel antibodies using SpyTag: ∆N-SpyCatcher. ABSTRACT: To develop imaging and therapeutic agents, antibodies are often conjugated randomly to a chelator/radioisotope or drug using a primary amine (NH(2)) of lysine or sulfhydryl (SH) of cysteine. Random conjugation to NH(2) or SH groups can require extreme conditions and may affect target recognition/binding and must therefore be tested. In the present study, nimotuzumab was site-specifically labeled using ∆N-SpyCatcher/SpyTag with different chelators and radiometals. Nimotuzumab is a well-tolerated anti-EGFR antibody with low skin toxicities. First, ΔN-SpyCatcher was reduced using tris(2-carboxyethyl)phosphine (TCEP), which was followed by desferoxamine-maleimide (DFO-mal) conjugation to yield a reactive ΔN-SpyCatcher-DFO. The ΔN-SpyCatcher-DFO was reacted with nimotuzumab-SpyTag to obtain stable nimotuzumab-SpyTag-∆N-SpyCatcher-DFO. Radiolabeling was performed with (89)Zr, and the conjugate was used for the in vivo microPET imaging of EGFR-positive MDA-MB-468 xenografts. Similarly, ∆N-SpyCatcher was conjugated to an eighteen-membered macrocyclic chelator macropa-maleimide and used to radiolabel nimotuzumab-SpyTag with actinium-225 ((225)Ac) for in vivo radiotherapy studies. All constructs were characterized using biolayer interferometry, flow cytometry, radioligand binding assays, HPLC, and bioanalyzer. MicroPET/CT imaging showed a good tumor uptake of (89)Zr-nimotuzumab-SpyTag-∆N-SpyCatcher with 6.0 ± 0.6%IA/cc (n = 3) at 48 h post injection. The EC(50) of (225)Ac-nimotuzumab-SpyTag-∆N-SpyCatcher and (225)Ac-control-IgG-SpyTag-∆N-SpyCatcher against an EGFR-positive cell-line (MDA-MB-468) was 3.7 ± 3.3 Bq/mL (0.04 ± 0.03 nM) and 18.5 ± 4.4 Bq/mL (0.2 ± 0.04 nM), respectively. In mice bearing MDA-MB-468 EGFR-positive xenografts, (225)Ac-nimotuzumab-SpyTag-∆N-SpyCatcher significantly (p = 0.0017) prolonged the survival of mice (64 days) compared to (225)Ac-control IgG (28.5 days), nimotuzumab (28.5 days), or PBS-treated mice (30 days). The results showed that the conjugation and labeling using SpyTag/∆N-SpyCatcher to nimotuzumab did not significantly (p > 0.05) alter the receptor binding of nimotuzumab compared with a non-specific conjugation approach. (225)Ac-nimotuzumab-SpyTag-∆N-SpyCatcher was effective in vitro and in an EGFR-positive triple negative breast cancer xenograft model.