Cargando…
OX-HDL: A Starring Role in Cardiorenal Syndrome and the Effects of Heme Oxygenase-1 Intervention
In this review, we will evaluate how high-density lipoprotein (HDL) and the reverse cholesterol transport (RCT) pathway are critical for proper cardiovascular–renal physiology. We will begin by reviewing the basic concepts of HDL cholesterol synthesis and pathway regulation, followed by cardiorenal...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7699797/ https://www.ncbi.nlm.nih.gov/pubmed/33233550 http://dx.doi.org/10.3390/diagnostics10110976 |
Sumario: | In this review, we will evaluate how high-density lipoprotein (HDL) and the reverse cholesterol transport (RCT) pathway are critical for proper cardiovascular–renal physiology. We will begin by reviewing the basic concepts of HDL cholesterol synthesis and pathway regulation, followed by cardiorenal syndrome (CRS) pathophysiology. After explaining how the HDL and RCT pathways become dysfunctional through oxidative processes, we will elaborate on the potential role of HDL dysfunction in CRS. We will then present findings on how HDL function and the inducible antioxidant gene heme oxygenase-1 (HO-1) are interconnected and how induction of HO-1 is protective against HDL dysfunction and important for the proper functioning of the cardiovascular–renal system. This will substantiate the proposal of HO-1 as a novel therapeutic target to prevent HDL dysfunction and, consequently, cardiovascular disease, renal dysfunction, and the onset of CRS. |
---|