Cargando…
Non-visual homing and the current status of navigation in scorpions
Within arthropods, the investigation of navigational aspects including homing abilities has mainly focused on insect representatives, while other arthropod taxa have largely been ignored. As such, scorpions are rather underrepresented concerning behavioral studies for reasons such as low participati...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7700070/ https://www.ncbi.nlm.nih.gov/pubmed/32350712 http://dx.doi.org/10.1007/s10071-020-01386-z |
Sumario: | Within arthropods, the investigation of navigational aspects including homing abilities has mainly focused on insect representatives, while other arthropod taxa have largely been ignored. As such, scorpions are rather underrepresented concerning behavioral studies for reasons such as low participation rates and motivational difficulties. Here, we review the sensory abilities of scorpions related to navigation. Furthermore, we present an improved laboratory setup to shed light on navigational abilities in general and homing behavior in particular. We tracked directed movements towards home shelters of the lesser Asian scorpion Mesobuthus eupeus to give a detailed description of their departure and return movements. To do so, we analyzed the departure and return angles as well as measures of directness like directional deviation, lateral displacement, and straightness indices. We compared these parameters under different light conditions and with blinded scorpions. The motivation of scorpions to leave their shelter depends strongly upon the light condition and the starting time of the experiment; highest participation rates were achieved with infrared conditions or blinded scorpions, and close to dusk. Naïve scorpions are capable of returning to a shelter object in a manner that is directionally consistent with the home vector. The first-occurring homing bouts are characterized by paths consisting of turns about 10 cm to either side of the straightest home path and a distance efficiency of roughly three-quarters of the maximum efficiency. Our results show that neither chemosensation nor vision, but rather path integration based on proprioception, plays a superior role in the homing of scorpions. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s10071-020-01386-z) contains supplementary material, which is available to authorized users. |
---|