Cargando…
A U-Net Based Approach for Automating Tribological Experiments
Tribological experiments (i.e., characterizing the friction and wear behavior of materials) are crucial for determining their potential areas of application. Automating such tests could hence help speed up the development of novel materials and coatings. Here, we utilize convolutional neural network...
Autores principales: | Staar, Benjamin, Bayrak, Suleyman, Paulkowski, Dominik, Freitag, Michael |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7700163/ https://www.ncbi.nlm.nih.gov/pubmed/33238554 http://dx.doi.org/10.3390/s20226703 |
Ejemplares similares
-
A Comprehensive Study about the Role of Crosslink Density on the Tribological Behavior of DLC Coated Rubber
por: Bayrak, Suleyman, et al.
Publicado: (2020) -
Automated identification of multinucleated germ cells with U-Net
por: Bell, Samuel, et al.
Publicado: (2020) -
Automated segmentation of vertebral cortex with 3D U-Net-based deep convolutional neural network
por: Li, Yang, et al.
Publicado: (2022) -
Automated segmentation of craniopharyngioma on MR images using U-Net-based deep convolutional neural network
por: Chen, Chaoyue, et al.
Publicado: (2022) -
TransU²-Net: An Effective Medical Image Segmentation Framework Based on Transformer and U²-Net
Publicado: (2023)