Cargando…

Inhibition of Campylobacter jejuni Biofilm Formation by D-Amino Acids

The ability of bacterial pathogens to form biofilms is an important virulence mechanism in relation to their pathogenesis and transmission. Biofilms play a crucial role in survival in unfavorable environmental conditions, acting as reservoirs of microbial contamination and antibiotic resistance. For...

Descripción completa

Detalles Bibliográficos
Autores principales: Elgamoudi, Bassam A., Taha, Taha, Korolik, Victoria
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7700173/
https://www.ncbi.nlm.nih.gov/pubmed/33238583
http://dx.doi.org/10.3390/antibiotics9110836
Descripción
Sumario:The ability of bacterial pathogens to form biofilms is an important virulence mechanism in relation to their pathogenesis and transmission. Biofilms play a crucial role in survival in unfavorable environmental conditions, acting as reservoirs of microbial contamination and antibiotic resistance. For intestinal pathogen Campylobacter jejuni, biofilms are considered to be a contributing factor in transmission through the food chain and currently, there are no known methods for intervention. Here, we present an unconventional approach to reducing biofilm formation by C. jejuni by the application of D-amino acids (DAs), and L-amino acids (LAs). We found that DAs and not LAs, except L-alanine, reduced biofilm formation by up to 70%. The treatment of C. jejuni cells with DAs changed the biofilm architecture and reduced the appearance of amyloid-like fibrils. In addition, a mixture of DAs enhanced antimicrobial efficacy of D-Cycloserine (DCS) up to 32% as compared with DCS treatment alone. Unexpectedly, D-alanine was able to reverse the inhibitory effect of other DAs as well as that of DCS. Furthermore, L-alanine and D-tryptophan decreased transcript levels of peptidoglycan biosynthesis enzymes alanine racemase (alr) and D-alanine-D-alanine ligase (ddlA) while D-serine was only able to decrease the transcript levels of alr. Our findings suggest that a combination of DAs could reduce biofilm formation, viability and persistence of C. jejuni through dysregulation of alr and ddlA.