Cargando…

(E)-1-(Furan-2-yl)-(substituted phenyl)prop-2-en-1-one Derivatives as Tyrosinase Inhibitors and Melanogenesis Inhibition: An In Vitro and In Silico Study

A series of (E)-1-(furan-2-yl)prop-2-en-1-one derivatives (compounds 1–8) were synthesized and evaluated for their mushroom tyrosinase inhibitory activity. Among these series, compound 8 (2,4-dihydroxy group bearing benzylidene) showed potent tyrosinase inhibitory activity, with respective IC(50) va...

Descripción completa

Detalles Bibliográficos
Autores principales: Jung, Hee Jin, Noh, Sang Gyun, Ryu, Il Young, Park, Chaeun, Lee, Ji Young, Chun, Pusoon, Moon, Hyung Ryong, Chung, Hae Young
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7700175/
https://www.ncbi.nlm.nih.gov/pubmed/33233397
http://dx.doi.org/10.3390/molecules25225460
Descripción
Sumario:A series of (E)-1-(furan-2-yl)prop-2-en-1-one derivatives (compounds 1–8) were synthesized and evaluated for their mushroom tyrosinase inhibitory activity. Among these series, compound 8 (2,4-dihydroxy group bearing benzylidene) showed potent tyrosinase inhibitory activity, with respective IC(50) values of 0.0433 µM and 0.28 µM for the monophenolase and diphenolase as substrates in comparison to kojic acid as standard compound 19.97 µM and 33.47 µM. Moreover, the enzyme kinetics of compound 8 were determined to be of the mixed inhibition type and inhibition constant (K(i)) values of 0.012 µM and 0.165 µM using the Lineweaver-Burk plot. Molecular docking results indicated that compound 8 can bind to the catalytic and allosteric sites 1 and 2 of tyrosinase to inhibit enzyme activity. The computational molecular dynamics analysis further revealed that compound 8 interacted with two residues in the tyrosinase active site pocket, such as ASN260 and MET280. In addition, compound 8 attenuated melanin synthesis and cellular tyrosinase activity, simulated by α-melanocyte-stimulating hormone and 1-methyl-3-isobutylxanthine. Compound 8 also decreased tyrosinase expressions in B16F10 cells. Based on in vitro and computational studies, we propose that compound 8 might be a worthy candidate for the development of an antipigmentation agent.