Cargando…
Fully Automated Breast Density Segmentation and Classification Using Deep Learning
Breast density estimation with visual evaluation is still challenging due to low contrast and significant fluctuations in the mammograms’ fatty tissue background. The primary key to breast density classification is to detect the dense tissues in the mammographic images correctly. Many methods have b...
Autores principales: | Saffari, Nasibeh, Rashwan, Hatem A., Abdel-Nasser, Mohamed, Kumar Singh, Vivek, Arenas, Meritxell, Mangina, Eleni, Herrera, Blas, Puig, Domenec |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7700286/ https://www.ncbi.nlm.nih.gov/pubmed/33238512 http://dx.doi.org/10.3390/diagnostics10110988 |
Ejemplares similares
-
An Enhanced Scheme for Reducing the Complexity of Pointwise Convolutions in CNNs for Image Classification Based on Interleaved Grouped Filters without Divisibility Constraints
por: Schwarz Schuler, Joao Paulo, et al.
Publicado: (2022) -
LungINFseg: Segmenting COVID-19 Infected Regions in Lung CT Images Based on a Receptive-Field-Aware Deep Learning Framework
por: Kumar Singh, Vivek, et al.
Publicado: (2021) -
Deep Monocular Depth Estimation Based on Content and Contextual Features
por: Abdulwahab, Saddam, et al.
Publicado: (2023) -
Effective Approaches to Fetal Brain Segmentation in MRI and Gestational Age Estimation by Utilizing a Multiview Deep Inception Residual Network and Radiomics
por: Mazher, Moona, et al.
Publicado: (2022) -
Monocular Depth Estimation Using Deep Learning: A Review
por: Masoumian, Armin, et al.
Publicado: (2022)