Cargando…

Early Signs of Atherogenic Features in the HDL Lipidomes of Normolipidemic Patients Newly Diagnosed with Type 2 Diabetes

Cardiovascular disease (CVD) is the major cause of death in patients with type-2 diabetes mellitus (T2DM), although the factors that accelerate atherosclerosis in these patients are poorly understood. The identification of the altered quantity and quality of lipoproteins, closely related to atheroge...

Descripción completa

Detalles Bibliográficos
Autores principales: Kostara, Christina E., Ferrannini, Eleuterio, Bairaktari, Eleni T., Papathanasiou, Athanasios, Elisaf, Moses, Tsimihodimos, Vasilis
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7700318/
https://www.ncbi.nlm.nih.gov/pubmed/33266469
http://dx.doi.org/10.3390/ijms21228835
Descripción
Sumario:Cardiovascular disease (CVD) is the major cause of death in patients with type-2 diabetes mellitus (T2DM), although the factors that accelerate atherosclerosis in these patients are poorly understood. The identification of the altered quantity and quality of lipoproteins, closely related to atherogenesis, is limited in routine to a pattern of high triglycerides and low HDL-cholesterol (HDL-C) and in research as dysfunctional HDLs. We used the emerging NMR-based lipidomic technology to investigate compositional features of the HDLs of healthy individuals with normal coronary arteries, drug-naïve; recently diagnosed T2DM patients with normal coronary arteries; and patients with recent acute coronary syndrome. Patients with T2DM and normal serum lipid profiles even at diagnosis presented significant lipid alterations in HDL, characterized by higher triglycerides, lysophosphatidylcholine and saturated fatty acids; and lower cholesterol, phosphatidylcholine, phosphatidylethanolamine, sphingomyelin, plasmalogens and polyunsaturated fatty acids, an atherogenic pattern that may be involved in the pathogenesis of atherosclerosis. These changes are qualitatively similar to those found, more profoundly, in normolipidemic patients with established Coronary Heart Disease (CHD). We also conclude that NMR-based lipidomics offer a novel holistic exploratory approach for identifying and quantifying lipid species in biological matrixes in physiological processes and disease states or in disease biomarker discovery.