Cargando…
Spectrophotometric Online Detection of Drinking Water Disinfectant: A Machine Learning Approach
The spectra fingerprint of drinking water from a water treatment plant (WTP) is characterised by a number of light-absorbing substances, including organic, nitrate, disinfectant, and particle or turbidity. Detection of disinfectant (monochloramine) can be better achieved by separating its spectra fr...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7700489/ https://www.ncbi.nlm.nih.gov/pubmed/33233424 http://dx.doi.org/10.3390/s20226671 |
Sumario: | The spectra fingerprint of drinking water from a water treatment plant (WTP) is characterised by a number of light-absorbing substances, including organic, nitrate, disinfectant, and particle or turbidity. Detection of disinfectant (monochloramine) can be better achieved by separating its spectra from the combined spectra. In this paper, two major focuses are (i) the separation of monochloramine spectra from the combined spectra and (ii) assessment of the application of the machine learning algorithm in real-time detection of monochloramine. The support vector regression (SVR) model was developed using multi-wavelength ultraviolet-visible (UV-Vis) absorbance spectra and online amperometric monochloramine residual measurement data. The performance of the SVR model was evaluated by using four different kernel functions. Results show that (i) particles or turbidity in water have a significant effect on UV-Vis spectral measurement and improved modelling accuracy is achieved by using particle compensated spectra; (ii) modelling performance is further improved by compensating the spectra for natural organic matter (NOM) and nitrate (NO(3)) and (iii) the choice of kernel functions greatly affected the SVR performance, especially the radial basis function (RBF) appears to be the highest performing kernel function. The outcomes of this research suggest that disinfectant residual (monochloramine) can be measured in real time using the SVR algorithm with a precision level of ± 0.1 mg L(−1). |
---|