Cargando…
Image Forgery Detection and Localization via a Reliability Fusion Map
Moving away from hand-crafted feature extraction, the use of data-driven convolution neural network (CNN)-based algorithms facilitates the realization of end-to-end automated forgery detection in multimedia forensics. On the basis of fingerprints acquired by images from different camera models, the...
Autores principales: | Yao, Hongwei, Xu, Ming, Qiao, Tong, Wu, Yiming, Zheng, Ning |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7700526/ https://www.ncbi.nlm.nih.gov/pubmed/33233380 http://dx.doi.org/10.3390/s20226668 |
Ejemplares similares
-
Exposing Image Forgery by Detecting Consistency of Shadow
por: Ke, Yongzhen, et al.
Publicado: (2014) -
Digital Image Forgery Detection Using JPEG Features and Local Noise Discrepancies
por: Liu, Bo, et al.
Publicado: (2014) -
The tremor of forgery /
por: Highsmith, Patricia, 1921-1995
Publicado: (1982) -
Design of Automated Deep Learning-Based Fusion Model for Copy-Move Image Forgery Detection
por: Krishnaraj, N., et al.
Publicado: (2022) -
Image copy-move forgery detection and localization based on super-BPD segmentation and DCNN
por: Li, Qianwen, et al.
Publicado: (2022)