Cargando…
A Study of Accelerometer and Gyroscope Measurements in Physical Life-Log Activities Detection Systems
Nowadays, wearable technology can enhance physical human life-log routines by shifting goals from merely counting steps to tackling significant healthcare challenges. Such wearable technology modules have presented opportunities to acquire important information about human activities in real-life en...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7700540/ https://www.ncbi.nlm.nih.gov/pubmed/33233412 http://dx.doi.org/10.3390/s20226670 |
_version_ | 1783616304163323904 |
---|---|
author | Jalal, Ahmad Quaid, Majid Ali Khan Tahir, Sheikh Badar ud din Kim, Kibum |
author_facet | Jalal, Ahmad Quaid, Majid Ali Khan Tahir, Sheikh Badar ud din Kim, Kibum |
author_sort | Jalal, Ahmad |
collection | PubMed |
description | Nowadays, wearable technology can enhance physical human life-log routines by shifting goals from merely counting steps to tackling significant healthcare challenges. Such wearable technology modules have presented opportunities to acquire important information about human activities in real-life environments. The purpose of this paper is to report on recent developments and to project future advances regarding wearable sensor systems for the sustainable monitoring and recording of human life-logs. On the basis of this survey, we propose a model that is designed to retrieve better information during physical activities in indoor and outdoor environments in order to improve the quality of life and to reduce risks. This model uses a fusion of both statistical and non-statistical features for the recognition of different activity patterns using wearable inertial sensors, i.e., triaxial accelerometers, gyroscopes and magnetometers. These features include signal magnitude, positive/negative peaks and position direction to explore signal orientation changes, position differentiation, temporal variation and optimal changes among coordinates. These features are processed by a genetic algorithm for the selection and classification of inertial signals to learn and recognize abnormal human movement. Our model was experimentally evaluated on four benchmark datasets: Intelligent Media Wearable Smart Home Activities (IM-WSHA), a self-annotated physical activities dataset, Wireless Sensor Data Mining (WISDM) with different sporting patterns from an IM-SB dataset and an SMotion dataset with different physical activities. Experimental results show that the proposed feature extraction strategy outperformed others, achieving an improved recognition accuracy of 81.92%, 95.37%, 90.17%, 94.58%, respectively, when IM-WSHA, WISDM, IM-SB and SMotion datasets were applied. |
format | Online Article Text |
id | pubmed-7700540 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-77005402020-11-30 A Study of Accelerometer and Gyroscope Measurements in Physical Life-Log Activities Detection Systems Jalal, Ahmad Quaid, Majid Ali Khan Tahir, Sheikh Badar ud din Kim, Kibum Sensors (Basel) Article Nowadays, wearable technology can enhance physical human life-log routines by shifting goals from merely counting steps to tackling significant healthcare challenges. Such wearable technology modules have presented opportunities to acquire important information about human activities in real-life environments. The purpose of this paper is to report on recent developments and to project future advances regarding wearable sensor systems for the sustainable monitoring and recording of human life-logs. On the basis of this survey, we propose a model that is designed to retrieve better information during physical activities in indoor and outdoor environments in order to improve the quality of life and to reduce risks. This model uses a fusion of both statistical and non-statistical features for the recognition of different activity patterns using wearable inertial sensors, i.e., triaxial accelerometers, gyroscopes and magnetometers. These features include signal magnitude, positive/negative peaks and position direction to explore signal orientation changes, position differentiation, temporal variation and optimal changes among coordinates. These features are processed by a genetic algorithm for the selection and classification of inertial signals to learn and recognize abnormal human movement. Our model was experimentally evaluated on four benchmark datasets: Intelligent Media Wearable Smart Home Activities (IM-WSHA), a self-annotated physical activities dataset, Wireless Sensor Data Mining (WISDM) with different sporting patterns from an IM-SB dataset and an SMotion dataset with different physical activities. Experimental results show that the proposed feature extraction strategy outperformed others, achieving an improved recognition accuracy of 81.92%, 95.37%, 90.17%, 94.58%, respectively, when IM-WSHA, WISDM, IM-SB and SMotion datasets were applied. MDPI 2020-11-21 /pmc/articles/PMC7700540/ /pubmed/33233412 http://dx.doi.org/10.3390/s20226670 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Jalal, Ahmad Quaid, Majid Ali Khan Tahir, Sheikh Badar ud din Kim, Kibum A Study of Accelerometer and Gyroscope Measurements in Physical Life-Log Activities Detection Systems |
title | A Study of Accelerometer and Gyroscope Measurements in Physical Life-Log Activities Detection Systems |
title_full | A Study of Accelerometer and Gyroscope Measurements in Physical Life-Log Activities Detection Systems |
title_fullStr | A Study of Accelerometer and Gyroscope Measurements in Physical Life-Log Activities Detection Systems |
title_full_unstemmed | A Study of Accelerometer and Gyroscope Measurements in Physical Life-Log Activities Detection Systems |
title_short | A Study of Accelerometer and Gyroscope Measurements in Physical Life-Log Activities Detection Systems |
title_sort | study of accelerometer and gyroscope measurements in physical life-log activities detection systems |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7700540/ https://www.ncbi.nlm.nih.gov/pubmed/33233412 http://dx.doi.org/10.3390/s20226670 |
work_keys_str_mv | AT jalalahmad astudyofaccelerometerandgyroscopemeasurementsinphysicallifelogactivitiesdetectionsystems AT quaidmajidalikhan astudyofaccelerometerandgyroscopemeasurementsinphysicallifelogactivitiesdetectionsystems AT tahirsheikhbadaruddin astudyofaccelerometerandgyroscopemeasurementsinphysicallifelogactivitiesdetectionsystems AT kimkibum astudyofaccelerometerandgyroscopemeasurementsinphysicallifelogactivitiesdetectionsystems AT jalalahmad studyofaccelerometerandgyroscopemeasurementsinphysicallifelogactivitiesdetectionsystems AT quaidmajidalikhan studyofaccelerometerandgyroscopemeasurementsinphysicallifelogactivitiesdetectionsystems AT tahirsheikhbadaruddin studyofaccelerometerandgyroscopemeasurementsinphysicallifelogactivitiesdetectionsystems AT kimkibum studyofaccelerometerandgyroscopemeasurementsinphysicallifelogactivitiesdetectionsystems |