Cargando…

Categorization and Characterization of Time Domain CMOS Temperature Sensors

Time domain complementary metal-oxide-semiconductor (CMOS) temperature sensors estimate the temperature of a sensory device by measuring the frequency, period and/or delay time instead of the voltage and/or current signals that have been traditionally measured for a long time. In this paper, the tim...

Descripción completa

Detalles Bibliográficos
Autor principal: Byun, Sangjin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7700608/
https://www.ncbi.nlm.nih.gov/pubmed/33238525
http://dx.doi.org/10.3390/s20226700
Descripción
Sumario:Time domain complementary metal-oxide-semiconductor (CMOS) temperature sensors estimate the temperature of a sensory device by measuring the frequency, period and/or delay time instead of the voltage and/or current signals that have been traditionally measured for a long time. In this paper, the time domain CMOS temperature sensors are categorized into twelve types by using the temperature estimation function which is newly defined as the ratio of two measured time domain signals. The categorized time domain CMOS temperature sensors, which have been published in literature, show different characteristics respectively in terms of temperature conversion rate, die area, process variation compensation, temperature error, power supply voltage sensitivity and so on. Based on their characteristics, we can choose the most appropriate one from twelve types to satisfy a given specification.