Cargando…
The Potential Effects of Curcumin on Pulmonary Fibroblasts of Idiopathic Pulmonary Fibrosis (IPF)—Approaching with Next-Generation Sequencing and Bioinformatics
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive interstitial lung disease. Currently, therapeutic options are limited for this fatal disease. Curcumin, with its pleiotropic effects, has been studied for its potential therapeutic utilities in various diseases, including pulmonary fib...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7700625/ https://www.ncbi.nlm.nih.gov/pubmed/33233354 http://dx.doi.org/10.3390/molecules25225458 |
_version_ | 1783616324077879296 |
---|---|
author | Chang, Wei-An Chen, Chia-Min Sheu, Chau-Chyun Liao, Ssu-Hui Hsu, Ya-Ling Tsai, Ming-Ju Kuo, Po-Lin |
author_facet | Chang, Wei-An Chen, Chia-Min Sheu, Chau-Chyun Liao, Ssu-Hui Hsu, Ya-Ling Tsai, Ming-Ju Kuo, Po-Lin |
author_sort | Chang, Wei-An |
collection | PubMed |
description | Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive interstitial lung disease. Currently, therapeutic options are limited for this fatal disease. Curcumin, with its pleiotropic effects, has been studied for its potential therapeutic utilities in various diseases, including pulmonary fibrosis. However, the detailed mechanisms have not been studied comprehensively. We conducted a next-generation sequencing and bioinformatics study to investigate changes in the profiles of mRNA and microRNA after curcumin treatment in IPF fibroblasts. We identified 23 downregulated and 8 upregulated protein-coding genes in curcumin-treated IPF fibroblasts. Using STRING and IPA, we identified that suppression of cell cycle progression was the main cellular function associated with these differentially expressed genes. We also identified 13 downregulated and 57 upregulated microRNAs in curcumin-treated IPF fibroblasts. Further analysis identified a potential microRNA-mediated gene expression alteration in curcumin-treated IPF fibroblasts, namely, downregulated hsa-miR-6724-5p and upregulated KLF10. Therefore, curcumin might decrease the level of hsa-miR-6724-5p, leading to increased KLF10 expression, resulting in cell cycle arrest in curcumin-treated IPF fibroblasts. In conclusion, our findings might support the potential role of curcumin in the treatment of IPF, but further in-depth study is warranted to confirm our findings. |
format | Online Article Text |
id | pubmed-7700625 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-77006252020-11-30 The Potential Effects of Curcumin on Pulmonary Fibroblasts of Idiopathic Pulmonary Fibrosis (IPF)—Approaching with Next-Generation Sequencing and Bioinformatics Chang, Wei-An Chen, Chia-Min Sheu, Chau-Chyun Liao, Ssu-Hui Hsu, Ya-Ling Tsai, Ming-Ju Kuo, Po-Lin Molecules Article Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive interstitial lung disease. Currently, therapeutic options are limited for this fatal disease. Curcumin, with its pleiotropic effects, has been studied for its potential therapeutic utilities in various diseases, including pulmonary fibrosis. However, the detailed mechanisms have not been studied comprehensively. We conducted a next-generation sequencing and bioinformatics study to investigate changes in the profiles of mRNA and microRNA after curcumin treatment in IPF fibroblasts. We identified 23 downregulated and 8 upregulated protein-coding genes in curcumin-treated IPF fibroblasts. Using STRING and IPA, we identified that suppression of cell cycle progression was the main cellular function associated with these differentially expressed genes. We also identified 13 downregulated and 57 upregulated microRNAs in curcumin-treated IPF fibroblasts. Further analysis identified a potential microRNA-mediated gene expression alteration in curcumin-treated IPF fibroblasts, namely, downregulated hsa-miR-6724-5p and upregulated KLF10. Therefore, curcumin might decrease the level of hsa-miR-6724-5p, leading to increased KLF10 expression, resulting in cell cycle arrest in curcumin-treated IPF fibroblasts. In conclusion, our findings might support the potential role of curcumin in the treatment of IPF, but further in-depth study is warranted to confirm our findings. MDPI 2020-11-21 /pmc/articles/PMC7700625/ /pubmed/33233354 http://dx.doi.org/10.3390/molecules25225458 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Chang, Wei-An Chen, Chia-Min Sheu, Chau-Chyun Liao, Ssu-Hui Hsu, Ya-Ling Tsai, Ming-Ju Kuo, Po-Lin The Potential Effects of Curcumin on Pulmonary Fibroblasts of Idiopathic Pulmonary Fibrosis (IPF)—Approaching with Next-Generation Sequencing and Bioinformatics |
title | The Potential Effects of Curcumin on Pulmonary Fibroblasts of Idiopathic Pulmonary Fibrosis (IPF)—Approaching with Next-Generation Sequencing and Bioinformatics |
title_full | The Potential Effects of Curcumin on Pulmonary Fibroblasts of Idiopathic Pulmonary Fibrosis (IPF)—Approaching with Next-Generation Sequencing and Bioinformatics |
title_fullStr | The Potential Effects of Curcumin on Pulmonary Fibroblasts of Idiopathic Pulmonary Fibrosis (IPF)—Approaching with Next-Generation Sequencing and Bioinformatics |
title_full_unstemmed | The Potential Effects of Curcumin on Pulmonary Fibroblasts of Idiopathic Pulmonary Fibrosis (IPF)—Approaching with Next-Generation Sequencing and Bioinformatics |
title_short | The Potential Effects of Curcumin on Pulmonary Fibroblasts of Idiopathic Pulmonary Fibrosis (IPF)—Approaching with Next-Generation Sequencing and Bioinformatics |
title_sort | potential effects of curcumin on pulmonary fibroblasts of idiopathic pulmonary fibrosis (ipf)—approaching with next-generation sequencing and bioinformatics |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7700625/ https://www.ncbi.nlm.nih.gov/pubmed/33233354 http://dx.doi.org/10.3390/molecules25225458 |
work_keys_str_mv | AT changweian thepotentialeffectsofcurcuminonpulmonaryfibroblastsofidiopathicpulmonaryfibrosisipfapproachingwithnextgenerationsequencingandbioinformatics AT chenchiamin thepotentialeffectsofcurcuminonpulmonaryfibroblastsofidiopathicpulmonaryfibrosisipfapproachingwithnextgenerationsequencingandbioinformatics AT sheuchauchyun thepotentialeffectsofcurcuminonpulmonaryfibroblastsofidiopathicpulmonaryfibrosisipfapproachingwithnextgenerationsequencingandbioinformatics AT liaossuhui thepotentialeffectsofcurcuminonpulmonaryfibroblastsofidiopathicpulmonaryfibrosisipfapproachingwithnextgenerationsequencingandbioinformatics AT hsuyaling thepotentialeffectsofcurcuminonpulmonaryfibroblastsofidiopathicpulmonaryfibrosisipfapproachingwithnextgenerationsequencingandbioinformatics AT tsaimingju thepotentialeffectsofcurcuminonpulmonaryfibroblastsofidiopathicpulmonaryfibrosisipfapproachingwithnextgenerationsequencingandbioinformatics AT kuopolin thepotentialeffectsofcurcuminonpulmonaryfibroblastsofidiopathicpulmonaryfibrosisipfapproachingwithnextgenerationsequencingandbioinformatics AT changweian potentialeffectsofcurcuminonpulmonaryfibroblastsofidiopathicpulmonaryfibrosisipfapproachingwithnextgenerationsequencingandbioinformatics AT chenchiamin potentialeffectsofcurcuminonpulmonaryfibroblastsofidiopathicpulmonaryfibrosisipfapproachingwithnextgenerationsequencingandbioinformatics AT sheuchauchyun potentialeffectsofcurcuminonpulmonaryfibroblastsofidiopathicpulmonaryfibrosisipfapproachingwithnextgenerationsequencingandbioinformatics AT liaossuhui potentialeffectsofcurcuminonpulmonaryfibroblastsofidiopathicpulmonaryfibrosisipfapproachingwithnextgenerationsequencingandbioinformatics AT hsuyaling potentialeffectsofcurcuminonpulmonaryfibroblastsofidiopathicpulmonaryfibrosisipfapproachingwithnextgenerationsequencingandbioinformatics AT tsaimingju potentialeffectsofcurcuminonpulmonaryfibroblastsofidiopathicpulmonaryfibrosisipfapproachingwithnextgenerationsequencingandbioinformatics AT kuopolin potentialeffectsofcurcuminonpulmonaryfibroblastsofidiopathicpulmonaryfibrosisipfapproachingwithnextgenerationsequencingandbioinformatics |