Cargando…

Content of Phenolic Compounds in Meadow Vegetation and Soil Depending on the Isolation Method

The aim of this paper was to determine the effect of the hydrolysis method on the amounts of phenolic compounds in the plant material in soil and, as a consequence, on the parameters to determine the degree of lignins transformation in soils. The study included the plant material (hay, sward, and ro...

Descripción completa

Detalles Bibliográficos
Autores principales: Ziolkowska, Anna, Debska, Bozena, Banach-Szott, Magdalena
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7700638/
https://www.ncbi.nlm.nih.gov/pubmed/33266357
http://dx.doi.org/10.3390/molecules25225462
Descripción
Sumario:The aim of this paper was to determine the effect of the hydrolysis method on the amounts of phenolic compounds in the plant material in soil and, as a consequence, on the parameters to determine the degree of lignins transformation in soils. The study included the plant material (hay, sward, and roots) and soil—Albic Brunic Arenosol (horizon A, AE, and Bsv) samples. Phenolic compounds were isolated at two stages by applying acid hydrolysis followed by alkaline re-hydrolysis. The quantitative and qualitative analysis of phenolic compounds was performed with high-performance liquid chromatography with a DAD. The content of phenolic compounds in the extracts depended on the hydrolysis method and it was determined by the type of the research material. The amounts of phenolic compounds contained in the alkaline hydrolysates accounted for 55.7% (soil, horizon Bsv)—454% (roots) of their content in acid hydrolysates. In the extracts from acid hydrolysates, chlorogenic and p-hydroxybenzoic acids were dominant. In the alkaline extracts from the plant material, the highest content was recorded for p-coumaric and ferulic acids, and in the extracts from soil, ferulic and chlorogenic acids. A combination of acid and alkaline hydrolysis ensures the best extraction efficiency of insoluble-bound forms of polyphenols from plant and soil material.