Cargando…
An Impartial Semi-Supervised Learning Strategy for Imbalanced Classification on VHR Images
Imbalanced learning is a common problem in remote sensing imagery-based land-use and land-cover classifications. Imbalanced learning can lead to a reduction in classification accuracy and even the omission of the minority class. In this paper, an impartial semi-supervised learning strategy based on...
Autores principales: | Sun, Fei, Fang, Fang, Wang, Run, Wan, Bo, Guo, Qinghua, Li, Hong, Wu, Xincai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7700671/ https://www.ncbi.nlm.nih.gov/pubmed/33238513 http://dx.doi.org/10.3390/s20226699 |
Ejemplares similares
-
An empirical study of ensemble-based semi-supervised learning approaches for imbalanced splice site datasets
por: Stanescu, Ana, et al.
Publicado: (2015) -
Neutrality and impartiality : the university and political commitment /
Publicado: (1975) -
Embedded Implementation of VHR Satellite Image Segmentation
por: Li, Chao, et al.
Publicado: (2016) -
Self-supervised Learning for Semi-supervised Time Series Classification
por: Jawed, Shayan, et al.
Publicado: (2020) -
Active semi-supervised learning for biological data classification
por: Camargo, Guilherme, et al.
Publicado: (2020)